首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
In this paper, the mechanical properties of polyurethane foam (PUF) reinforced with glass fiber (RPUF) and non-reinforced PUF were investigated and compared to evaluate their structural applicability and failure criteria. The effects of glass fiber reinforcement were analyzed by tensile, compression, and repetitive impact testing. In the compression test, the differences of compressive response were analyzed by specimen directions, and tensile tests were carried out to evaluate the strain rate sensitivity of two materials in the low strain rate regime (έ<0.1/s). Structural impact tests were carried out using dry drop tests and custom-made equipment. The dimensions of the test PUF specimens were 340 mm × 340 mm × 270 mm. Reaction forces were measured at the bottom of the specimen using impact load sensors with the capacity to measure up to 100 ton. Deformation due to impact load was measured using a high-speed camera system. The time histories of the impact load versus displacement behavior during repetitive impact loading were analyzed. This study presents a comprehensive understanding of the effect of fiber reinforcement on the mechanical behavior of PUF.  相似文献   

2.
含多局部减薄缺陷压力管道的安全评定方法讨论   总被引:2,自引:0,他引:2  
彭剑  周昌玉  薛吉林  代巧 《压力容器》2010,27(5):21-25,9
局部减薄是压力管道常见的一种体积型缺陷,在管道的服役过程中不仅会出现单个局部减薄缺陷,甚至会有多个局部减薄缺陷。通过有限元方法模拟内压作用下含双局部减薄缺陷管道获得其极限载荷,讨论了在不同的轴向和环向排列方式以及不同的局部减薄相对深度下,两局部减薄缺陷间的距离对压力管道极限载荷影响程度的差异。然后对所计算模型应用API 579-1 ASMEFFS-1—2007《适合服役》与GB/T19624—2004《在用含缺陷压力容器安全评定》中对多局部减薄(凹坑)处理方法进行评定,并与有限元得到的结果进行比较,发现两评定规范既存在着保守性,也存在着不安全性。最后对两评定规范所论述的方法进行修正,提出了一种新的用于内压作用下含多局部减薄缺陷管道的多局部减薄处理方法。  相似文献   

3.
In the present study, the effects of pipe geometries, material properties and loading conditions on crack-tip constraints of pipes with circumferential Through-wall crack (TWC) were investigated via systematic 3-dimensional (3-D) Finite element (FE) analyses. The crack-tip constraints were quantified by Q-stress, and to characterize the elastic-plastic strain hardening material behavior, Ramberg-Osgood (R-O) material was employed. Based on the FE results, it was observed that crack-tip constraints of pipes with TWC were dependent on crack length and thickness of pipe, however, the effects of each variables decreased as either thickness of pipe becomes thinner or crack length becomes longer. Moreover, the effects loading modes on Q-stresses for thin-walled pipes with TWC are negligible. Finally, the present Q-stresses of pipes were compared with those of Curved wide plate (CWP) in tension to address the similarity of crack-tip constraints between pipe and CWP, which could be used to produce the CWP to measure the fracture toughness of pipes accurately.  相似文献   

4.
Collapse of pressurized elastoplastic tubular members under lateral loads   总被引:1,自引:0,他引:1  
The present work examines the collapse of tubular members subjected to lateral (transverse) quasi-static loading in the presence of uniform pressure. In particular, it investigates pressure effects on the ultimate lateral load of tubes and on their energy absorption capacity. External pressure is mainly considered, whereas internal pressure effects are also discussed. Tubes are modeled with shell finite elements, accounting for geometric and material nonlinearities. Relatively thick steel and aluminum tubes (D/t50), which exhibit significant inelastic deformations, are considered. Two-dimensional cases are examined first, where lateral loading is imposed by either two rigid plates or by two opposite radial loads. Three-dimensional cases are also analyzed, where the load is applied either through a pair of opposite wedge-shaped indenters or a single spherical indenter. The results are presented in terms of load–deflection curves for different levels of pressure, and indicate that the presence of pressure has significant effects on tube response. Deformed shapes of tubes are depicted and discussed, and comparison with test data from non-pressurized pipes is conducted. Finally, simplified analytical models are presented for two-dimensional and three-dimensional load configurations, which yield closed-form expressions, compare fairly well with the finite element results and illustrate some important features of tube response in an elegant manner.  相似文献   

5.
内压及扭矩载荷下无缺陷弯管的应力分析   总被引:2,自引:1,他引:2  
郭茶秀  魏新利  刘宏  李培宁 《机械强度》2002,24(3):391-393,412
分析在内压或扭矩载荷作用下非均匀壁厚椭圆弯管的应力分布,结果表明内压引起的最大应力随着弯管的截面不均匀度而变化,由此解释了工程实际中弯管失效的原因,同时也为求解弯管的塑性极限载荷奠定了基础。  相似文献   

6.
肖志华  何斌  智小琦  王素金 《机械》2012,39(4):33-36
针对钢管混凝土结构构件在爆炸冲击荷载作用下的动力响应进行研究,试验对象为相同管径三种不同壁厚的钢管混凝土结构构件在简支状态下,受到两种不同爆炸冲击荷载的作用,测量了两种不同爆炸空气冲击波的压力时间曲线、构件跨中的应变时间曲线和构件跨中的最终挠度值,并对测量结果进行分析,为钢管混凝土构件的抗爆炸荷载设计提供有益的试验成果,也为后续进一步研究提供有效的基础数据和可靠的对比参照.  相似文献   

7.
The mechanical characteristics of three types of core with two-dimensional isotropic patterns – triangular, hexagonal, and starcell – were studied as related to applications in sandwich structures. The Young's modulus, shear modulus, and Poisson's ratio were calculated for the three core types in the direction normal to the faces. The compressive buckling strength and shear buckling strength were calculated for the three core types by modeling each cell wall of the core as a plate under compressive or shear load. To verify this model, tests were conducted on scaled specimens to measure the compressive buckling strength of each core. The bending flexibilities of the three cores were also studied. Compliances for the three cores were measured using biaxial flexural tests. Tests were performed on each core type in which the deflection of a circular core sample loaded at its center was measured. The three isotropic core patterns exhibited distinct characteristics. In the direction normal to the faces, all three cores had the same stiffness. However, the triangular core had lower compressive and shear buckling strengths than the other two core types. The starcell core exhibited high flexibility compared to the other cores, indicating a potential for application in curved sandwich structures.  相似文献   

8.
The deformation of double-skin profiled polyethylene pipes under axial and lateral load is studied. The load–displacement relationship and specific energy of such pipes were measured under single and repeated loading. The effect of repeating load was observed and discussed. The results show that the visco-elastic nature of the material as well as the periodic axisymmetric profile of the outer skin make this type of pipes a good candidate for re-usable energy absorption devices.  相似文献   

9.
署恒木 《机械强度》2002,24(1):93-97
到目前为止,还没有文献给中向裂纹管道在非对称弯曲及扭转组合变形时的塑性极限载荷计算公式。文中根据净截面垮塌准则用沙堆比拟法分别求出埋藏裂纹、外表面裂纹、内表面裂纹、穿透裂纹管道发生扭转变形时的塑性极限扭矩;给出含周向裂纹薄壁管道横截面上的剪应力分布规律,其塑性极限扭矩等于一个闭口薄壁截面与一个开口薄壁截面圆环的塑性极限扭矩之和,闭口薄壁截面的壁厚为管道壁厚减裂纹深度;开口薄壁截面的壁厚为裂纹的深度。推导了各种周向裂纹管在内压、轴力、扭矩及非对称弯矩共同作用时的塑性极限载荷关系式,并由此给出其他一些组合变形时的极限载荷计算公式。本文结果可供管道安全评价时参考。  相似文献   

10.
钻杆长期服役后内壁出现的腐蚀是造成钻杆断裂的主要原因,针对钻杆内壁腐蚀的检测,提出了一种基于复合磁化的漏磁检测方法。该方法通过阵列感应线圈拾取钻杆外壁交流磁场的变化,进而评价内壁腐蚀产生的壁厚减薄状态,规避了强背景磁场下用霍尔元件测量磁场时量程范围不足、灵敏度不够等问题。利用有限元仿真软件分析壁厚减薄上方的相对磁导率分布,对比了有、无壁厚减薄的磁感应强度变化率,仿真与实验结果表明该方法可以实现钻杆内壁壁厚减薄的检测。  相似文献   

11.
含环向减薄缺陷主蒸汽管道蠕变应力变化规律研究   总被引:1,自引:0,他引:1  
厚壁耐热钢广泛应用于高温电厂的主蒸汽管道。局部减薄缺陷是高温压力管道常见的体积型缺陷,局部减薄缺陷的存在对高温环境下运行的管道应力重分布会产生较大的影响,降低管道的承载能力。采用大型有限元分析软件ABAQUS对在蠕变条件下运行、受内压作用含环向减薄缺陷主蒸汽管的蠕变应力进行了有限元数值模拟,获得了应力重分布的变化过程。结果表明,含环向减薄缺陷直管,由于存在结构不连续,导致应力水平提高。在高温环境下,应力最大位置和应力集中系数最大位置可能会随蠕变时间的变化而改变,给出了含环向减薄管道应该主要关注的位置。研究结果可为高温含环向减薄缺陷管道的安全评定和完整性分析提供依据。  相似文献   

12.
Most previous studies on fretting fatigue have been accomplished under constant normal loading and less attention has been paid to cyclic normal loading. An innovative test apparatus was specially designed and manufactured for fretting fatigue tests under cyclic loading in this work and the fretting fatigue behavior of Al7075-T6 was investigated at different normal load frequencies. A finite element model was developed to study the effect of normal load frequency on the contact stress distribution. It was found that the cyclic normal load has a more damaging effect on fretting fatigue life compared to constant normal load, particularly at lower frequencies. The results showed that at the normal load frequency of f = 1 Hz, fatigue life decreased by 52% in the high cycle fatigue regime and 28% in the low cycle fatigue regime. The experimental results also indicated that at the normal load frequency of 80 Hz, the fretting fatigue life converged to its corresponding life under constant normal load condition. The fracture surface and the fretting area of the specimens were examined using both optical and scanning electron microscopy (SEM). The experimental observations showed that the dominant partial slip condition with a wider slip region compared to constant normal loading, severe delamination, and higher oxidation rate due to the normal load release at each cycle, are the most important reasons for significant reductions in fretting fatigue life, under cyclic normal loading, especially for low normal load frequencies.  相似文献   

13.
Identification of material properties in the hoop direction, such as stress–strain behavior, is essential in tube hydroforming processes. Conventional tests such as uniaxial tension and compression tests have some drawbacks and limitations. In the current investigations a simple technique to identify the stress–strain behavior in the hoop direction for tubular material is introduced, based on the experimental data obtained from tube lateral compression test. In the proposed technique, an assumed stress–strain curve is used in finite element simulation to predict the load deflection curve of the tube lateral compression. An iterative algorithm is used to compare the calculated and experimental load deflection curves until a good agreement with a percentage deviation less than 4% is obtained. The suggested technique was used to obtain the material properties of Cu–40%Zn brass tube. The predicted stress–strain curve was compared with that obtained from uniaxial compression test. Comparison between the experimental and predicted stress–strain curve showed that the proposed technique is effective in the prediction of the material properties from the tube lateral compression test with percentage deviation less than 1%.  相似文献   

14.
The loading capacity of transmission towers cannot be calculated accurately only by finite element analysis (FEA) method. Traditional displacement sensors and strain gauges are not suit due to larger measuring range. In this paper, a novel system based on close-range photogrammetry technology (CPT) is proposed for tracking the 3D deformation of transmission tower during loading test. Artificial markers are pasted on the deformation area before loading. The 3D coordinates of these markers are reconstructed by using CPT methods at each stage, and the coordinate systems of different stages are registered together by means of global transformation points. The whole field 3D deformation under different load level is then obtained by tracking the homonymous markers among different stages. It is helpful for further analysis of the failure mechanism and mechanical properties of steel structures. The effectiveness of the proposed system is demonstrated by retrieving a full-scaled transmission tower deformation during loading test. A feasible solution for improving the load carrying capacity of the tested transmission tower is discussed. Evaluation experiment results indicate that the proposed method could achieve accuracy of 0.1 mm/m.  相似文献   

15.
Advances in sensors technology provided an opportunity to monitor structures during different construction stages, as well as the behavior of concrete elements during hydration and strength gain. In this paper, embedded Fabry–Pérot fiber-optic sensors were utilized in an experimental investigation to study the hydration process in two different concrete volumes. In addition, the sensors performance under cyclic and torsional loading was investigated. The results showed that up to +300 μstrains could be developed until the final setting is reached. The increase in strain was accompanied by a 55 °C (130 °F) increase in temperature during the first 24 h. These values vary based on the nature of the mix and the concrete volume. In the cyclic and torsion tests, the fiber-optic sensors responded to load variations and were capable of recording samples responses as small as 1 μstrain.  相似文献   

16.
进行了核电站90°弯管在内压和面内弯曲载荷作用下的棘轮效应试验,并采用数值方法研究了90°弯管的极限载荷、安定载荷和棘轮边界。利用理想弹塑性有限元分析,基于两倍弹性斜率准则和切线相交准则分别确定了90°弯管单独承受内压和弯曲载荷的极限载荷;利用线性匹配方法确定了90°弯管在单独内压和弯曲载荷以及两者共同作用下的极限载荷和安定载荷;利用Ohno-Wang模型,结合C-TDF弹塑性有限元分析方法和线性匹配方法分别确定了90°弯管的棘轮边界;最后,对弹塑性有限元方法和线性匹配法确定的棘轮边界进行了比较。结果表明:两倍弹性斜率准则、切线相交准则和线性匹配方法确定的极限载荷误差为10.78%,其中弹性迭代的线性匹配法能高效、快速地进行计算。比较C-TDF法和线性匹配法确定的棘轮边界,结果发现:当内压在20~35 MPa之间时,两种方法确定的棘轮边界吻合很好;当内压小于20 MPa时,两种方法的预测结果呈现不同的趋势。  相似文献   

17.
The kinematic hardening theory of plasticity based on the Prager and Frederick–Armstrong models are used to evaluate the cyclic loading behavior of a beam under the axial, bending, and thermal loads. The beam material is assumed to follow non-linear strain hardening property. The material's strain hardening curves in tension and compression are assumed to be both identical for the isotropic material and different for the anisotropic material. A numerical iterative method is used to calculate the stresses and plastic strains in the beam due to cyclic loadings. The results of the analysis are checked with the known experimental tests. It is concluded that the Prager kinematic hardening theory under deformation controlled conditions, excluding creep, results into reversed plasticity. The load controlled cyclic loading under the Prager kinematic hardening model with isotropy assumption results into reversed plasticity. Under anisotropy assumption of tension/compression curve, this model predicts ratcheting. On the other hand, the Frederick–Armstrong model predicts ratcheting behavior of the beam under load controlled cyclic loading with non-zero mean load. This model predicts reversed plasticity under the load controlled cyclic loading with zero mean load, and deformation controlled cyclic loading.  相似文献   

18.
Oblique loading was studied through quasi-static experiments and numerical simulations. The behavior of square aluminum columns in alloy AA6060 subjected to quasi-static oblique loading was investigated experimentally for three different load angles. The square columns were clamped at one end and oblique load conditions were realized by applying a force with different angles to the centerline of the column. These tests were used to validate a numerical model. Numerical studies of oblique impact were carried out using the validated model, and the mean crush load was investigated through factorial analysis with parameters as load angle, thickness, length, and heat treatment of the alloy and impact velocity.  相似文献   

19.
In microsystem applications, many microstructures are submerged in fluid and their performances are directly influenced by the microfluidic–structure interactions. Characterizations of such interactions in microfluidic devices such as micropumps, microvalves, micro-viscometers, and biomedical related microfluidic chips, are essential to seek enhanced designs and design guidance. In this study, a hybrid microfluidic test chip with integrated microcantilever is fabricated on a polymer platform using soft lithography method for characterization of microcantilever–fluid interactions. A measurement technique based on the motion video image capture and processing (MVIP) is developed to measure the static and dynamic deflections of the microcantilever subjected to forces due to fluid within the microchannel. A peristaltic pump was used to generate fluid flows across the channel, which caused a pressure differential loading of the microstructure. The images of motion were processed to characterize the motion in terms of deflection, velocity and acceleration of the structure under different flow conditions. The validity of the proposed MIP method is illustrated through comparisons with finite element model of the microcantilever. The images acquired from the proposed MVIP method were further analyzed to estimate deflection mode shapes and natural frequencies of the microcantilever under fluid interactions.  相似文献   

20.
This paper presents a runout measurement method and a novel finite grouping method to predict and optimize the rotational angle and translational displacement of butting pipes to minimize pipe wall misalignment (PWM). This study develops a method to minimize the PWM of the pipes excluding the positions of welding seams. In this method, the measurement data are divided into finite groups and the criteria are created to identify the positions of welding seams and eliminate the effect of the welding seams. Finally, the rotational angle and translational displacement of the butting pipes are optimized to minimize the PWM. A butting machine is designed to implement this method. The machine is benchmarked by a standard smooth pipe to minimize system errors. Three butting experiments have been performed with welded pipes of diameter 406 mm. The comparison shows that the computation results agree with the experimental results very well. The maximum PWMs in three experiments are less than 1.87 mm, which satisfies the butting requirements, that is, a PWM of less than 2.0 mm. Then, the uncertainties of the measurement results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号