首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
高速列车脉动压力测试中,为消除传感器自身尺寸对测点脉动压力的影响及脉动压力在导压管内发生畸变而产生的测试误差,提出传感器阵列测板的脉动压力测试方法。以某CRH型高速列车为研究对象,采用PRO/E软件建立1∶1尺寸模型,在ANSYS ICEM软件中对计算区域进行网格划分,利用大涡数值模拟(LES)方法计算车体表面压力,确定车体表面监测点位置及数量。研究表明:车体侧面沿X方向的脉动压力不具有时间相关性;列车线路试验时,用设计好的传感器阵列测板取代列车表面外壳,能有效避免传感器自身尺寸引起的干扰以及导压管内产生的压力损失。  相似文献   

2.
列车表面脉动压力是引发列车气动噪声的主要来源,高速列车表面压力测试过程中,难于有效提取出脉动压力,为此,设计了动车组模型表面压力试验测试系统:利用LabVIEW编写数据采集和输出程序以及PID控制程序完成风速控制系统的设计,利用数据采集卡、离心通风机、有机玻璃风道以及动车组模型等完成压力测试系统的设计;提出利用EEMD分解和重构提取出不同速度级下测点处的脉动压力,并得到不同速度级下的脉动压力级波动范围和波动幅度。研究结果表明:该系统可有效测量出动车组模型表面压力;通过提取出不同速度级下的脉动压力,可以看出,随着速度的增大,脉动压力增加;建立的总脉动压力级与速度的关系可为列车的结构设计和减振降噪提供理论指导。  相似文献   

3.
高速铁路沿线的防风屏障因经常受到列车风和横风的气动冲击作用,其自身结构稳定性十分重要。利用高速列车动模型平台进行列车运动对腔室耗能型风屏障产生气动冲击的1∶8缩尺模型试验。测试了不同车型的列车以不同车速通过风屏障区域时,在风障不同位置处产生的气动压力,并分析气动压力的变化规律。研究结果表明:高速列车通过风障区域时,对风障各部分均形成了"正-负-负-正"的脉动压力;随着列车车速的增加,气动冲击压力幅值增大,头车波和尾车波换向时间减小,压力变化率增大;压力极值及变化率与车速的二次方相关,不同车速下的压力系数几乎相等;风障不同高度处压力波的变化趋势相同,但幅值不同,在列车鼻锥高度区域出现最大值;不同车型的列车在相同车速下对风障气动冲击作用趋势相同,但幅值不同,钝体头型列车的气动压力大于子弹头型列车的;随着风障距轨道中心线距离增大,列车脉动压力逐渐减小,其中头车波峰减小最为明显,与安装间距近似成线性关系。  相似文献   

4.
《机械设计与制造》2017,(Z1):137-140
随着运行速度的提高,高速列车的通过噪声显著增加,由于气动噪声与列车运行速度的4~8次方成正比,气动噪声有可能成为高速列车的主要噪声源。基于Lighthill声类比理论的混合方法,结合完美匹配层边界条件和高阶单元,利用有限元法对CRH380A型高速列车远场气动噪声特性进行了计算分析,得到了列车远场噪声的分布情况、影响区域和传播方向。结果表明:高速列车表面偶极子噪声源由车身向列车四周辐射,随着距车身距离的增加,辐射噪声不断衰减;随着频率的增加,高速列车周围各处噪声均下降,高声压级噪声的区域缩小,声压级分布渐趋于均匀;列车运行速度为300km/h时,标准测点处的噪声时域等效声压级为87.11dB,与实验实测值接近;不同运行速度下,标准测点处的噪声在很宽的频带内存在;随着运行速度的增加,标准测点处噪声声压级在频域和时域内都增加。  相似文献   

5.
高速列车表面脉动压力是引起气动噪声的主要根源,研究车体表面脉动压力对噪声控制等方面有重要意义。采用大涡模拟(LES)仿真计算高速列车运行时头车和尾车外流场的脉动压力,利用二进正交db小波将脉动压力分解为能量互不重叠的正交频带,并分析脉动压力在各频带上的能量分布规律。数值仿真结果表明:列车表面脉动压力由平均压力和在平均压力附近上下波动的脉动部分组成,脉动压力在全频带均有分布,且主要集中在低频区域;随着列车运行速度的提高,车体表面脉动压力幅值迅速增大,主要能量向高频区域移动;头车、尾车脉动压力变化趋势相似,且头车脉动压力大于尾车脉动压力。  相似文献   

6.
研究表明脉动压力是引起气动噪声的主要根源,因此动车组减振降噪要先探究其表面脉动压力。针对微压阻式压力传感器特性及动车组模型试验环境建立了传感器输出模型;利用小波阈值方法进行降噪,通过尺度系数与原始信号的相关性来确定分解层数,根据3σ准则进行小波分解的阈值选取;根据相关系数分离出振动压力和风机噪声压力,最终提取出脉动压力,并利用脉动压力对测点处气动噪声进行预测。研究表明:提取出的脉动压力所预测的气动噪声和传声器所测的噪声变化趋势基本一致,转折频率都为120 Hz,验证了该脉动压力提取方法的正确性,为后续高速动车组压力测量以及减振降噪的研究提供了参考。  相似文献   

7.
由于高速列车气动载荷是隧道会车时列车行车安全的重要因素之一,而其在实车试验中又难以测量,提出采用基于计算流体力学的数值模拟方法。通过空气动力学仿真获取列车的表面压力分布,对列车压力和粘性力积分合成,得到列车的气动载荷,即阻力、侧向力、升力、侧滚力矩、点头力矩和摇头力矩。全面分析了气动载荷的构成和变化特点,及其在不同速度下的变化特性。结果表明,列车隧道会车时,气动载荷主要是由压力构成;列车在隧道会车时气动载荷出现剧烈波动;气动载荷的幅值与速度呈二次函数的变化规律。研究结果可为列车系统动力学分析提供气动载荷依据。  相似文献   

8.
为探究变转速运行对离心泵压力脉动的影响,以1台比转速为95的单级单吸离心泵为研究对象,利用高频动态压力传感器,同步采集泵进、出口及蜗壳周向不同位置处变转速下的压力脉动信号,并开展相似工况下压力脉动信号频谱特性分析。试验结果表明:相似工况下,随转速提高,轴频、叶频及其倍频的压力脉动幅值均增大;对压力脉动幅值无量纲化,发现轴频及叶频处各测点压力脉动系数随转速的变化规律存在差异性,但各测点压力脉动系数的平均值却几乎不受转速影响,并且各测点在整个低频段(0~4 f_(BPF))的压力脉动能量平均值亦随转速变化不显著,表明压力脉动系数和能量平均值可作为衡量泵动态特性的参数;流量对泵动态特性影响显著,从0.6Q增加至1.3Q,各转速下泵压力脉动能量平均值呈先减小再增大趋势。  相似文献   

9.
基于计算流体力学和滑移网格技术,数值模拟了列车通过引起的轨侧脉动压力波。建立列车通过轨侧脉动压力波的计算模型,通过网格独立性检验选取合适的计算网格。研究列车通过轨侧脉动压力波的特征,规律以及四种不同轨道基础形式对列车通过轨侧压力波的影响,包括平地、单线路堤、复线路堤和复线桥梁。研究结果表明:列车头部通过引起轨侧测点的压力峰峰值,比列车尾部通过引起轨测点的压力峰峰值要大;列车通过平地的压力峰峰值最大,通过复线桥梁的压力峰峰值最小;轨侧压力的峰峰值与距轨道中心线横向距离呈负指数关系,不同速度下列车通过引起的轨侧压力峰峰值系数几乎一致。  相似文献   

10.
模型可逆式水泵水轮机S区压力脉动测试   总被引:1,自引:0,他引:1  
S区特性是影响可逆式水泵水轮机过渡过程工况运行稳定的重要影响因素,通过研究模型水泵水轮机S区压力脉动可以为准确预测真机过渡过程工况下的特性奠定基础,为设计和运行提供有效指导。本文在某模型水泵水轮机特性试验的基础上,对S区包括蜗壳进口、无叶区、尾水锥管和尾水肘管等测点的压力脉动进行了测试,获得了各测点压力脉动混频幅值的分布与频率成分变化情况。测试结果表明:在等开度线上,飞逸工况时各测点的压力脉动混频幅值达到最大;同一工况点,无叶区压力脉动大于蜗壳进口压力脉动;沿流道方向,无叶区、锥管0.4D2、锥管1.0D2和肘管压力脉动依次减小;S区部分工况点存在主频为0.63fR的旋转失速频率;0.18fR频率成分广泛分布于S区内各工况点和测点中,引起这方面的原因可能是尾水管中的低频涡带、低频振荡或装置固有频率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号