首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
2.
In various fields of engineering, it is important to clarify friction-induced vibration, such as stick-slip motion, for a wide range of scales from microscopic elements to continental plates. In the present study, we apply a rate- and state-dependent friction model [30] (Hashiguchi and Ozaki, 2008), which can rationally describe the reciprocal transition between the static friction and the kinetic friction by a unified formulation, to the simulation of stick-slip instability for a one-degree-of-freedom spring-mass system under various conditions. It is verified that the various basic experimental findings on stick-slip motion can be pertinently described by the present approach. Moreover, the effect of the dynamic characteristics of the system, such as the mass, stiffness and driving velocity, is discussed, and parameters prescribing the rate of reciprocal transition of static-kinetic frictions and the preliminary microscopic sliding on the instability of the stick-slip motion are also discussed.  相似文献   

3.
The piezoelectric stick-slip (PZT-SS) actuator is known to achieve motion with a theoretically unlimited range yet high resolution (several nanometers). In this type of actuator, friction plays an active role in producing a meaningful stick-slip motion. However, friction is a source of heat which may cause significant temperature rise, affecting the dynamic performance of the actuator. Our study aimed to measure temperature rise in the stick-slip motion and to understand whether such a rise could significantly affect the displacement of the stick-slip motion. In this study, a temperature measurement system was developed using the off-the-shelf components, with which the temperature rise up to 0.436 degrees C was successfully measured on a proprietary PZT-SS actuator. The experiment further shows that the temperature rise affects the displacement of the actuator when operating voltage is at the low end (approximately 6 V). Therefore, one of the design recommendations for such an actuator system is that the operating voltage should be at the high end (approximately 30 V). The study also measured the temperature rise (approximately 0.263 degrees C after the system worked for 6300 s) at the friction interface due to the piezoelectric element which is a part of the whole PZT-SS actuator. This means that temperature rise is due to both the friction at two interacting surface and the operation of the piezoelectric element.  相似文献   

4.
The stick-slip phenomenon is a type of dysfunction detrimental to the drilling operation. Field application shows that stick-slip phenomenon is inclined to appear when using a large Weight on bit (WOB). In this paper, effects of the WOB on the stick-slip vibration are investigated. Based on a lumped torsional pendulum model of the drilling system, equation of motion of the drill bit is obtained. By using parameters commonly used in field applications, the bit dynamics are analyzed and the stick-slip vibrations are discussed. During the stick-slip motions, the negative damping effect occurs in the transition from the stick phase to the slip phase. With the increasing WOB, the bit behavior may change from the stable motion to the stick-slip vibration once the WOB reaches the critical value. In case of stick-slip vibration, the phase trajectory ultimately converges to a limit cycle which represents periodical bit motion. With increases in the WOB, the limit cycle enlarges. For cases without stick-slip vibrations, the drill bit vibrates damply and finally converges to a state of uniform motion. The results presented in this paper can be applied to interpret some of the field phenomena related to WOB.  相似文献   

5.
针对地铁线路直缓点附近区间上的一种特殊钢轨波磨现象,根据现场条件建立车辆-轨道系统数值模型,并对模型的有效性进行了验证;运用数值模型分析上述线路区间的轮轨界面黏滑特性,解释了该类钢轨波磨的形成原因;结合轮轨系统动力响应特性,分析促使钢轨波磨生成和发展的波长固定属性的成立条件。结果表明:在线路直缓点附近区间,导向轮对和从动轮对内外侧轮轨界面均会发生横向黏滑运动,而轮轨界面发生纵向黏滑运动的概率较低,且黏滑运动的交替发生,导致了钢轨表面初始波磨的形成;当导向轮对和从动轮对内外侧车轮经过线路直缓点时,外侧轮轨接触表现为轮缘-轨距角接触,且接触形式的改变造成了轮轨系统法向力的波动,说明直缓点的存在赋予了轮轨横向黏滑运动的相位同步特征,能够保持钢轨波磨的波长固定属性,因此,钢轨波磨最终形成并不断发展,而且内轨表现为轨面波磨,外轨表现为侧面波磨,这与实测区间波磨现象一致。  相似文献   

6.
In this paper, a desktop-size NC machine tool is first presented to have multi-application function, such as 3D-machining modes with and without handling a machining force, and profiling-control modes with and without using stick-slip motion. The NC machine tool consists of three single-axis devices with a high resolution of 1???m in position. A ball end mill called router bit or a thin wood-stick tool can be attached to the tip of the z-axis. The proposed machine tool realizes compliant motion required for the profiling control along a desired trajectory. The profiling-control mode can be applied to the lapping process of a metallic LED lens cavity. Next, a control strategy with fine stick-slip motion is further added to the profiling-control system to improve the lapping performance. The fine stick-slip motion is generated orthogonally to the direction of the tool movement. Generally, the stick-slip motion is an undesirable phenomenon to be eliminated in precision machineries. However, the proposed machine tool employs the fine stick-slip motion to partly regulate slight finishing energy. The effectiveness of the machine tool is demonstrated through an actual machining test of a wood material and a lapping test of a metallic LED lens cavity.  相似文献   

7.
The rigid-interface friction model is usually used in the nonlinear vibration of the rectangular plate with dry friction support edges. The present study provides an extension by using a hysteretic spring friction model and taking account of the stick-slip motion of the plate. Results for a range of problem parameters have been obtained. The results show that the nonlinear frequency response behavior of the system can be quite different from the rigid-interface friction model. The effects of the stiffness at friction interfaces and the stick-slip motion on the nonlinear vibration of the plate are significant and hence cannot be neglected.  相似文献   

8.
Chao Gao 《摩擦学汇刊》2013,56(2):473-477
Using dynamical analysis for a pin-on-disk sliding system and the consideration of meniscus formation at the sliding interface, a wide range of experimental observations on stick-slip motion can be explained. It is shown that when the initial growth rate of the static friction force is larger than about half the product of the substrate speed and the spring constant, slick-slip motion occurs in that sliding system. The critical substrate speed or the critical spring constant, above which stick-slip motion ceases, can thus be determined. It is also shown that the saturation substrate speed, below which stick-slip motion retains its maximum stick-slip amplitude, is inversely proportional to the total growth time of the static friction force. The maximum stick-slip amplitude is proportional to the final difference between the static and kinetic friction force. For a thicker surface liquid-film, the initial growth rate and the final static friction force are larger but the total growth time is shorter, resulting in a larger critical speed, a larger stick-slip amplitude, and a larger saturation speed. For rougher contact surfaces, the initial growth rate is larger but the final static friction force and the total growth lime are smaller, resulting in a larger critical speed, a smaller stick-slip amplitude, and a larger saturation speed.  相似文献   

9.
In this note, quasistatic solutions of a two-mass-two-spring Tomlinson model for atomic force microscopy are derived, and are compared with the corresponding results of the single-spring Tomlinson model. It is clarified that the solutions of the two models are equivalent provided that the effective spring constant is correctly defined. It is also shown that modeling the onset of stick-slip motion in terms of the criteria defined by explicit tip and cantilever stiffness is the most convenient to investigate the effects of the tip-flexibility on the stick-slip motion.  相似文献   

10.
为满足微纳操作系统对精密驱动技术的需求,本文提出了一种基于黏滑原理的小型精密运动平台。该平台将柔性铰链、惯性质量块以及弹性元件结合为独立的定子基座,并与压电叠堆、陶瓷球固连为定子,安装在平台基座底部,通过螺钉调节弹性元件端部垂直方向的位置,就可以改变定子与移动台间的预压力,进而获得最佳的驱动力。为研究黏滑驱动的运动机理,分析各参数对平台运动的影响,进行了力学建模;而摩擦力作为黏滑驱动的关键因素,为了能准确地表达黏滑驱动的摩擦机理,在力学建模中引入了LuGre摩擦模型,并利用Matlab/Simulink软件进行了仿真分析。设计加工的黏滑驱动平台的整体尺寸为40mm×40mm×18mm,质量为32g。试验表明:该平台最小可实现10nm的运动步长,速度最高可达2.5mm/s,行程为22mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号