首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
大厚度铝合金板搅拌摩擦焊工程应用时常用双轴肩焊接工具焊接,而双轴肩焊接工具使用寿命较短、易磨损,铝合金厚板单轴肩搅拌摩擦焊在工程实践中具有重要意义。针对5A06铝合金厚板的单轴肩搅拌摩擦焊过程进行了热流有限元分析,建立了大厚度铝合金板热流仿真模型,分析了5A06铝合金焊接时温度场分布特征、焊接热循环曲线特征,焊接前进侧/后退侧热循环曲线及外加热源、冷源对搅拌摩擦焊温度场的影响。结果表明,单轴肩搅拌焊工具插入工件预热初期,轴肩产热占整个搅拌工具产热70%以上,前进侧和后退侧最高温度相差约40℃,同时施加热源和冷源时能够很好地限制板材底部热量的散失以及轴肩附近温度的快速升高,有利于焊缝质量的提升。  相似文献   

2.
搅拌摩擦焊是一种新型的、绿色环保、高效的固相焊接技术,其过程涉及由轴肩和搅拌针构成的无损耗搅拌工具。焊接过程中,高速旋转的搅拌工具插入到工件表面直至轴肩与工件接触,并沿焊缝向前行进,利用搅拌工具与工件产生的摩擦热使待焊材料塑化,并在搅拌工具的带动下产生流动与混合从而实现焊接。详细分析了搅拌摩擦焊接的微观组织结构,搅拌工具以及主要工艺参数对焊接的影响并通过试验研究了主轴转速、焊接速度以及轴肩下压量对焊接温度的影响。试验研究表明,主轴转速和焊接速度对焊接温度的影响较大,下压量对焊接温度的影响不大。  相似文献   

3.
在搅拌摩擦焊稳定焊接阶段,对搅拌头的受力情况进行了有限元分析。由于应力集中的影响,搅拌针根部是搅拌头承载能力最弱的部分。分析了不同结构搅拌头的受力情况。结果表明,圆锥形搅拌针承载能力优于圆柱形搅拌针;平面轴肩优于内凹轴肩;搅拌针根部的过渡圆角半径越大,应力集中现象越小。  相似文献   

4.
《机械科学与技术》2015,(12):1961-1965
搅拌头作为搅拌摩擦焊接的核心部件,其工作状态与使用寿命,对焊接过程起着决定性作用,而其受力与应力值,将直接影响搅拌头的磨损和疲劳分析。建立了AA6061-T6搅拌摩擦焊接计算流体力学模型,对搅拌头附近压力场进行分析,计算搅拌头横向受力,包括轴肩表面阻力,搅拌针上压力和搅拌针底部阻力。基于得到的搅拌针上载荷分布,进一步计算出多种转速工况下搅拌针根部危险截面疲劳应力变化规律。  相似文献   

5.
摩擦点焊是在搅拌摩擦焊基础上开发的1种新型固态连接技术.针对2 mm厚的LY12铝合金,采用正交试验设计方法对点焊工艺参数进行了优化.试验结果表明,搅拌头形状对焊点剪切强度的影响最显著,其次是焊接时间,搅拌头轴肩直径的影响最小.优化后的最佳工艺参数为:搅拌头旋转速度为2 500 r/min,焊接时间为12 s,轴肩直径为16 mm,搅拌头为探针带左螺纹圆柱形搅拌头.采用优化后的最佳工艺参数进行焊接,焊点的剪切强度达为9.24 kN,比优化前焊点最佳剪切强度提高了5.06%,是电阻点焊焊点剪切强度的1.5倍,是铆接接头剪切强度的2.5倍.  相似文献   

6.
利用正交试验法研究了搅拌摩擦焊工艺参数对LY12铝合金接头组织和力学性能的影响.结果表明:搅拌头轴肩直径对接头抗拉强度的影响大于搅拌头旋转速度和焊接速度对接头强度的影响;当焊接工艺参数匹配合理时,接头热输入量适当,焊核晶粒组织为细小均匀的等轴晶,接头抗拉强度大于350MPa,接头强度系数高达86%.  相似文献   

7.
张军  王稳  王健  金涛涛  田志鹏 《中国机械工程》2022,33(17):2115-2124
为了解决非刚性支撑条件下传统搅拌头易陷入被焊接板材而导致焊接失败的问题,设计研发了静轴肩焊接结构。通过建立有限元仿真计算模型,并使用热红外成像仪对焊接表面温度进行实时监测,分析不同工艺参数下静轴肩摩擦搅拌焊焊接过程中的温度场变化情况。使用设计研发的静轴肩摩擦搅拌焊进行现场试验并对完成焊接表面无缺陷的焊缝与母材进行拉伸试验对比,检测其焊缝机械强度,并对断口进行微观组织分析。结果表明:在使用静轴肩搅拌头焊接过程中,产热量主要来源于搅拌针轴肩的摩擦生热和搅拌针端部的摩擦生热,搅拌针的侧面摩擦生热和静轴肩的摩擦生热占比较小;对产热量影响较大的是主轴压力和主轴转速,C轴转速对产热量影响不大;在主轴压力为2940~3430 N,主轴转速为1000 r/min,C轴转速为0.05 r/min的工艺参数下,完成焊接的焊缝表面光滑无飞边,内部无沟槽隧道缺陷,焊缝抗拉性能达到母材的71.5%左右;焊缝断口存在分层现象,靠近焊接表面的上层呈脆性断裂特性,下层呈延性断裂特性,与母材相比,焊缝试样的延伸率和抗拉强度均有所降低。  相似文献   

8.
锻造ZK60镁合金的搅拌摩擦焊工艺   总被引:2,自引:0,他引:2  
采用搅拌摩擦焊焊接工艺对4 mm厚的锻造ZK60镁合金板进行了焊接试验,研究了搅拌头轴肩尺寸、旋转速度及焊接速度等对焊缝质量及接头抗拉强度的影响,并得到了较佳焊接工艺参数。结果表明:在其他条件一定时,焊接接头的抗拉强度随搅拌速度的增加而增大,随焊接速度的增加而先增大后减小;当搅拌头轴肩直径为15 mm、旋转速度为1 170 r.min-1,焊接速度为36 mm.min-1时,所得焊缝表面光滑,无裂纹、孔洞、疏松及未焊透等缺陷,接头的抗拉强度最大,为271.2 MPa,约为母材的85%。  相似文献   

9.
搅拌摩擦焊接(Friction stir welding, FSW)是材料固态连接新技术,但FSW在焊接过程中一般会对工件施加较大的下压力,焊接设备和被焊工件在下压力的作用下均可能产生变形,使得常规FSW中设定的下压量这一关键参数偏离预期值,无法保证焊接工艺的稳定性。为了解决这一问题,开发一套下压力反馈控制系统,通过调节搅拌头对工件的下压量来调节下压力,使焊接过程中下压力保持稳定。该系统使用一台计算机作为顶层控制器,根据压力传感器反馈的实时下压力调节FSW设备Z轴的进给。使用该系统在悬空的钢板上焊接6082-T6铝合金平板对接焊缝,焊接过程中工件在下压力的作用下产生的弯曲变形高达0.931 mm,但所得的焊缝成形良好,沿焊缝方向不同位置的接头的横截面形貌基本一致,其横向拉伸应力应变曲线高度重合,接头的平均抗拉强度为222.8 MPa。结果表明,工件在下压力作用下产生变形的条件下,下压力控制的FSW系统仍能保证工艺稳定性。  相似文献   

10.
搅拌摩擦焊接头材料流动行为是优化焊接工艺的根本所在,目前关于无针搅拌摩擦点焊流动行为尚未形成统一的认识。以0.02 mm镍箔为示踪材料,采用轴肩端面具有渐开线凹槽的无针搅拌头,改变旋转速度和焊接时间进行1.8 mm厚2198-T8铝锂合金搭接搅拌摩擦点焊试验,借助微焦点锥束三维CT设备、扫描电镜等测试手段,研究材料流动行为及其对接头宏观形貌、晶粒特征的影响。结果表明,轴肩下方的金属在轴肩挤压和摩擦热作用下先软化,以螺旋形向下向内流动形成搅拌区;随着焊接时间的延长,搅拌区金属向上和向外流动增强,致使搅拌区外缘界面翘曲,形成Hook缺陷。随旋转速度或焊接时间增大,搅拌区金属向下和向上向外流动加剧,焊核的深度和直径增大、晶粒更细小;下板金属软化程度加强,搅拌区外缘下板更多的塑化金属向上向外流动,致使Hook更翘曲。研究结果为深入了解无针搅拌摩擦点焊材料流动行为和优化焊接工艺提供了理论基础。  相似文献   

11.
搅拌焊工具技术是搅拌摩擦焊工艺最重要的因素。搅拌焊工具主要由肩部和焊针组成,焊接薄板时,旋转的肩部和工件之间摩擦产生的热量是主要热源,而随着板厚的增加,更多的热量必须靠旋转的焊针和工件摩擦产生。焊接工具的主要作用是保证连接区材料产生足够的塑性变形,并控制焊针周围塑性体的流动,形成优质的焊接接头。  相似文献   

12.
Underwater friction stir welding (FSW) could widely extend the submarine applications of solid-state welding methods. Since, in the case of underwater FSW, the temperature field exhibits profound effects on the acquired weld properties, studying the corresponding governing parameters is of high priority. With this end in view, in order to explicate the heat generated by the FSW tool, the applied forces on the FSW tool, as the unknown parameters in the heat generation equation, are obtained. Subsequently, the heat transfer of the surrounding fluid, which dictates the heat transfer through the workpiece is investigated. The results reveal that upon comparison to FSW in air medium, both translational and axial forces considerably increase leading to greater heat generated by the underwater FSW tool. However, the peak temperature in each point during underwater welding declines dramatically (40 %) compared to the in-air welding, which can be attributed to the extreme boiling heat transfer of water on both the workpiece and FSW tool. This behavior may be the main reason for the acquired mechanical properties of the underwater-welded AA7075-T6 plates as a precipitating hardening alloy. The mentioned heat transfer is non-uniform over the workpiece and comprises different types including nucleation and transition boiling as well as free convection. Furthermore, the study of the mechanical characteristics revealed that underwater welding leads to joints with more strength and lower ductility compared to those obtained by in-air welding.  相似文献   

13.
点焊熔核尺寸与工艺参数关系的模型化处理   总被引:7,自引:0,他引:7  
针对生产中常用的 1Cr18Ni9Ti板材 ,采用正交试验设计法研究了其交流点焊接头的熔核尺寸 (熔核直径、焊透率 )受主要焊接工艺参数影响的规律性。对实验数据进行了多元线性回归 ,建立了熔核尺寸与焊接电流、焊接时间、电极压力、电极端面尺寸、工件厚度之间关系的数学模型 ,并采用该模型对熔核尺寸进行了预测  相似文献   

14.
The scope of this investigation is to evaluate the effect of welding parameters on the mechanical properties and microstructural features of 3-mm-thick AA7075-T6 aluminum alloy subjected to gas heating system as a preheating source during friction stir welding. Toward this end, a gas heating system was designed to heat up the weld seam just ahead of rotating tool to soften the material before being stirred. Three welding parameters, five levels, and a central composite design (CCD) have been used to minimize the number of experimental conditions. The joining parameters such as tool rotational speed, welding speed, and shoulder diameter have a significant influence on determining the mechanical properties of the welded joints. It was found that using preheating system mostly can result in higher total heat input into the weld joint and effectively reduces the formation of defects when unsuitable process parameters were used. Also, an attempt has been made to establish the mathematical model to predict the tensile strength and microhardness of the joints. The optimal welding conditions to maximize the final responses were investigated and reported. The results show that the joint fabricated at a rotational speed of 1,050 rpm, welding speed of 100 mm/min, and shoulder diameter of 14 mm exhibited higher mechanical properties compared to other joints.  相似文献   

15.
提出了基于热图像的搅拌摩擦焊核心区温度检测方法,通过建立轴肩边缘焊材表面辐射度与电压的映射关系、热图像灰度与电压的映射关系,推导出轴肩边缘焊材表面温度与热图像灰度的关系。结合辐射热交换原理,得到了轴肩边缘焊材表面温度与核心区温度的关系,并求解得到搅拌摩擦焊核心区温度。实验对比验证了所建测温模型的正确性与可行性。  相似文献   

16.
In this paper, the effect of friction stir welding (FSW) parameters on wear and deformation behavior of tungsten carbide (WC) tool employed in the welding of AISI 304 austenitic stainless steel (SS) is reported. In addition, the wear and deformation of the tool are also characterized. Three FSW parameters, namely shoulder diameter, tool rpm, and traverse speed each at three levels were considered. Experiments were performed as per Taguchi’s L9 orthogonal array to investigate the effect of these parameters on wear and plastic deformation of the tool. Wear at the pin root and bottom face of the pin attributed to diffusion and attrition mechanisms, respectively, were observed. Significant deformation of the tool was also observed during welding which caused bulging of the shoulder with an increased cone angle of the pin.  相似文献   

17.
In this paper, the finite element method is used to investigate the extrusion process of the straight-fin heat sink in computers. A series of simulations on the straight-fin extrusion using the program DEFORM 2D was carried out. The influences of the process parameters such as straight-fin thickness, straight-fin clearance and friction factor between the die and workpiece on the difference of maximum and minimum extruded fin lengths are examined.  相似文献   

18.
Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method (FEM) cutting simulation. In this study, a new three-region friction modeling is proposed to illustrate the material flow mechanism around the friction zone in micro cutting; estimate the stress distributions on the rake, edge, and clearance faces of the tool; and predict the stagnation point location and the minimum cutting thickness. The friction modeling is established by determining the distribution of normal and shear stress. Then, it is applied to calculate the stagnation point location on the edge face and predict the minimum cutting thickness. The stagnation point and the minimum cutting thickness are also observed and illustrated in the FEM simulation. Micro cutting experiments are conducted to validate the accuracy of the friction and the minimum cutting thickness modeling. Comparison results show that the proposed friction model illustrates the relationship between the normal and sheer stress on the tool surface, thereby validating the modeling method of the minimum cutting thickness in micro cutting.  相似文献   

19.
The use of friction stir welding (FSW) to join thermoplastics has proven to produce strong welds with good surface quality when compared to conventional welding methods. In this study, a Teflon stationary shoulder was developed to weld 3-mm-thick plates of high molecular weight polyethylene in butt-joint configuration. Different sets of welding parameters were chosen and tested to evaluate their effect on the weld strength. Also, in order to increase joint performance, the temperature generated during welding was measured. For that purpose, thermocouples were located underneath of the weld nugget surface to measure the generated frictional heat for different tool diameters and parameters. Tool diameter and rotational and welding speeds are the most influential parameters regarding the welding temperature; however, all the input parameters had statistically significant effect on the weld quality. Unlike FSW in metals, using this tool, the heat is generated mainly by surface contact of the rotating probe and copper sleeve than the base material. The strongest welded joint was able to withstand 97% of the force that is necessary to fracture the base material, without using an external heating source.  相似文献   

20.
Thermal effects often limit the performance of cutting processes. The energy spent in cutting is almost completely converted into heat which partly flows to workpiece, chip, and tool during the process. Therefore, knowledge about this partition is valuable for the process, tool, and coolant system design or for the compensation of thermal deformations of the workpiece and machine tool. For this reason, a simulation model based on the finite element method was developed to analyze the heat partition in dry metal cutting. The model utilizes the coupled Eulerian-Lagrangian method to simulate the chip formation in orthogonal cutting and to calculate the temperature distribution within workpiece, chip, and tool. This distribution was used to compute the heat partition between workpiece, chip, and tool in dependence of relevant process parameters. Furthermore, the results were validated by orthogonal cutting experiments and summarized in a formula to calculate the rate of heat flow into the workpiece as a function of those parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号