首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
用于大气临边探测的高光谱成像仪是一种探测大气痕量气体的新型空间光学遥感仪器。分析了利用高光谱成像仪进行大气临边探测的原理,设计并研制了一台紫外/可见高光谱成像仪原理样机,该样机光学系统由前置望远系统和改进的Czerny-Turner光谱成像系统组成,工作谱段为280~390 nm和560~780 nm,通过转轮切换紫外、可见滤光片分别探测这2个波段。高光谱成像仪原理样机质量为15 kg,体积500 mm×350 mm×200 mm。对该样机的性能进行了检测并测量了低压汞灯的光谱。性能检测结果表明,空间分辨力为0.44 mrad,光谱分辨力为1.3 nm,均满足设计指标要求。该样机结构紧凑、质量小,在空间大气痕量气体探测领域有广泛的应用前景。  相似文献   

2.
用于电离层探测的远紫外成像光谱仪研究   总被引:2,自引:0,他引:2  
电离层成像探测一直是我国大气遥感的一个薄弱环节.根据大气成像光谱探测原理,针对应用要求设计和研制了电离层探测成像光谱仪原理样机.样机采用一片离轴抛物镜与改进的Czerny-Turner光谱仪匹配的光学结构形式,工作波段为120~180 nm的远紫外波段.探测器选用了接收平面为微通道板(MCP)的光子计数型楔形阳极位敏探测器,在真空下实现对远紫外波段的探测.样机质量6.8 kg,体积360 mm×210 mm×250 mm.利用实验室真空系统与氘灯搭建了样机检测系统,获得了样机的基本性能参数.与国外方案结果对比表明,样机光谱分辨率为2.4 nm,空间分辨率75 μm,对应地面分辨率约0.6 km,除传输效率略低外,其他各项指标均接近或达到先进水平,该成果对空间和大气遥感具有重要的研究和应用价值.  相似文献   

3.
薛庆生 《光学精密工程》2016,24(9):2101-2108
针对天底和临边综合紫外大气探测的需求,分析了天底和临边双视场观测原理和技术指标,设计和研制了多谱段双视场紫外大气探测仪原理样机。该样机光学系统由前透镜组、环形透镜、中继透镜组和窄带滤光片组成,3个工作谱段的中心波长分别为265nm、295nm和360nm,带宽均小于20nm,天底视场为10°,临边视场为360°(141.8°~146.6°),焦距为5mm,F数为3.3,通过切换窄带滤光片完成3个谱段的探测。多谱段双视场紫外大气探测仪整机质量约为3kg,体积为Φ90mm×300mm。对样机的静态传递函数和像面照度均匀性进行了测试。测试结果表明,在特征频率38.5lp/mm处,天底视场的静态传递函数为0.24,临边视场的静态传递函数为0.22,像面照度均匀性为94%,均优于设计指标要求。该原理样机体积小、重量轻,满足空间光学遥感仪器小型化和轻量化的要求。  相似文献   

4.
用于火星探测的声光可调谐滤波器成像光谱仪   总被引:3,自引:2,他引:1  
赵慧洁  程宣  张颖 《光学精密工程》2012,20(9):1945-1952
面向火星探测,设计并研制了一种基于声光可调谐滤波器(AOTF)原理的成像光谱仪地面原理样机.该样机由前置光机系统和后置电子学系统组成,光学系统采用消色差远心光路结构,工作波段为550~1 000 nm,光谱分辨率为0.9~4.0 nm.在电子学系统中引入可编程片上系统技术,并设计了新型SpaceWire高速总线接口用于数据传输.样机在实验室定标的基础上,搭载于模拟火星探测器上进行了成像试验.试验结果表明:样机成像质量良好;与ASD光谱仪的一致性对比检验表明,光谱测量准确可靠,两者数据匹配精度超过96%.SpaceWire接口实现了100 Mb/s数据率的稳定传输,满足设计指标25 Mh/s的要求.样机的研制为A)TF成像光谱技术在火星遥感探测领域的应用奠定了技术基础.  相似文献   

5.
于磊  陈结祥  薛辉  申远 《光学精密工程》2018,26(10):2363-2370
本文主要设计一种新型的可用于机载的紫外-可见-近红外高光谱成像系统,从而为沿海水色环境与污染观测提供一种有效的观测仪器。首先,根据探测目标特点确定了仪器系统的性能设计参数,选择了Dyson成像光谱系统来满足系统在宽谱段上的高信噪比和高光学性能;但Dyson成像光谱系统的结构过于紧凑,因此对Dyson成像光谱系统进行了研究,调整了狭缝、像面和光学元件的位置,使它们在轴向和垂直轴向上均具备足够的间隔,并在这种大空气间隔下分析了系统的完善消像差条件。通过光程分析和弯月透镜的加入,使改进型Dyson系统在0.278的数值孔径和320~1 000 nm的宽波段上具备良好的成像结果,全视场全波段MTF值在探测器奈奎斯特频率下(38.5 lp/mm)高于0.5,研制原理样机的光谱分辨率为3.375 nm,满足设计要求。该系统可为沿海水色环境的高光谱观测提供良好的工程应用基础。  相似文献   

6.
陈波  尼启良  王君林 《光学精密工程》2007,15(12):1862-1868
综述了我所软X射线-极紫外波段关键技术的研究进展。描述了软X射线-极紫外波段光源技术,研制了工作波段为6~22 nm的微流靶激光等离子体光源;介绍了光子计数成像探测器技术,研制出了有效直径为25 mm,等效像元分辨率为0.3 mm的极紫外波段探测器;开展了超光滑表面加工、检测技术的研究,研制了超光滑表面抛光机,加工出高面形精度的超光滑表面,面形精度为6 nm(RMS值),表面粗糙度达0.6 nm(RMS值);进行了软X射线-极紫外波段多层膜技术的研究,研制出13 nm处反射率为60%的多层膜反射镜,150 mm口径反射镜的反射率均匀性优于±2.5%;最后,讨论了软X射线-极紫外波段测量技术研究,研制出该波段反射率计,其测量范围为5~50 nm,光谱分辨率好于0.2 nm,测量重复性好于±1%。在上述关键技术研究基础上,研制出了极紫外波段成像仪和空间极紫外波段太阳望远镜,这些仪器在我国空间科学研究项目中发挥了作用。  相似文献   

7.
研制成太阳/大气紫外光谱辐射计,工作波段120nm至500nm,光谱分辨率0.08nm。它由标准光源,积分球,双光栅单色仪,探测器及电子学—计算机系统组成。用这台仪器进行了长春地区不同大气条件及大气质量太阳/大气紫外(260~500)nm波段光谱辐射测量。测量结果表明该仪器光谱响应稳定性好于1%/年,太阳/大气紫外波段光谱辐照度测量值(绝对值)不确定度好于3~5%。  相似文献   

8.
为提高成像光谱仪的工作波长范围,提出了基于双波段焦平面探测器(FPAs)的双衍射级次全共路Offner成像光谱仪结构。该结构中凸面光栅的一级衍射光和二级衍射光完全重叠共路传输,并可由焦平面处的双波段红外焦平面探测器IR FPAs实现级次的自然分离和同时探测。分析了该结构的工作原理和设计方法,基于几何光线追迹法仿真了谱线弯曲和色畸变特性,基于Huygens点扩散函数(PSF)仿真了光谱响应函数(SRF)并导出了光谱带宽。实验显示:双衍射级次共路Offner成像光谱仪的工作波段为3~6μm(二级衍射)和6~12μm(一级衍射),谱线弯曲和色畸变均小于0.5个像元宽度,光谱带宽分别为13.2~14.3nm(二级衍射)和28.3~33.3nm(一级衍射),两个工作波段内的衍射效率均大于或等于20%。整个系统结构简单紧凑、光谱范围宽,满足对地物或深空目标的中等分辨率的中远红外光谱探测需求。  相似文献   

9.
凸面光栅成像光谱仪的研制与应用   总被引:6,自引:2,他引:4  
考虑传统光栅成像光谱仪受光学畸变的限制难以同时实现大光学孔径和小型化要求,利用全息法设计并制作了凸面光栅,并以该凸面光栅作为核心元件研制了便携式成像光谱仪。该光谱仪以推扫方式进行目标扫描,获取成像光谱数据立方。仪器的光谱分辨率为2.4 nm,光谱谱线弯曲为0.1%,色畸变为0.6%,体积为209 mm×199 mm×110 mm。介绍了仪器的工作原理和结构设计,并进行了实验室检测和室外花卉实际光谱测量。测试结果表明:凸面光栅成像光谱仪的光谱分辨率为2.1 nm,光谱谱线弯曲为0.09%,色畸变为0.6%,均满足设计要求,实际花卉光谱测试亦取得了较为理想的结果。  相似文献   

10.
为了实现超宽谱段与高分辨率特点兼具的中阶梯光栅光谱仪系统,提出了一种光路结构设计,并针对其深紫外波段的有效探测方法进行了研究及验证。该光路结构结合准Littrow结构与C-T结构的优势,保证了色散光路具备高衍射效率,同时很好地抑制了杂散光。在有限可选光学材料下,采用多重评价优化方式获得中阶梯光栅光谱仪的光学结构参数。通过加入由球透镜及柱透镜组成的校正结构,有效地校正了像差,提高了光谱分辨率。最后,针对深紫外波段探测的解决方案进行模态分析,验证了所设计方案的可行性。最终在160~1 000 nm的超宽波段范围内,成像光斑的RMS值优于12.1μm,在257.61 nm处的光谱分辨率优于0.009 nm,能够满足超宽谱段、高分辨率检测系统的色散分光需求。  相似文献   

11.
高明  许黄蓉 《光学仪器》2017,39(2):77-80
为了满足高校教学和人才培养的需求,便于系统的小型化、低成本,设计了低成本光谱仪的光学系统和机械结构,制作了低成本的光谱仪实物并完成了对仪器的性能测试。该光谱仪的工作波长为400~800nm,分辨率为20nm,仪器尺寸为200mm×120mm×80mm,成本控制在2 000元以内。通过对仪器的测试,获得了六个光谱特征峰,验证了低成本光谱仪系统光学设计的可行性和合理性。  相似文献   

12.
在小型化成像光谱仪的研制和应用中,如何同时实现轻量化、高地面分辨率和高信噪比是目前亟待突破的技术难题。本文通过将线性渐变滤光片分光技术和数字域时间延迟积分技术相结合,并对镜头进行紧凑化处理,设计了一款工作波段为403~988 nm、平均光谱分辨率为8.9 nm、系统总质量为7 kg的轻小型星载高光谱成像光谱仪。仿真和实验结果表明,该高光谱成像仪能在500 km轨道上得到刈幅宽度为50.5 km、地面分辨率为10 m的高光谱图像,且图像信噪比良好。该成像光谱仪可为微纳卫星获得高分辨率的高光谱图像提供技术支持,推动了我国高光谱遥感探测技术的发展。  相似文献   

13.
显微高光谱成像系统的设计   总被引:21,自引:4,他引:17  
设计出一种基于棱镜 光栅 棱镜组合分光方式的显微高光谱成像实验系统.系统根据推帚式成像光谱仪的原理进行设计,采用棱镜 光栅 棱镜组合元件在后光学系统进行光谱分光,利用高精度载物台自动装置驱动样品进行推扫成像,选用PCI总线作为数据采集的微机接口.整个系统由显微镜、分光计、面阵CCD相机、载物台自动装置以及数据采集与控制模块等几部分组成.系统的光谱范围从400nm到800nm,120个波段,光谱分辨率优于5nm,空间分辨率大约1μm.该系统具有直视性、光谱分辨率高、结构紧凑、成本低等优点;不仅能够提供微小物体在可见光范围的单波段显微图像,而且能够获得图像中任一像素的光谱曲线,实现了光谱技术和显微成像技术的结合,成功的将成像光谱技术应用到显微领域,可广泛应用于临床医学、生物学、材料学、微电子学等学科领域.  相似文献   

14.
根据分光测色仪的应用需要,对分光系统、光电接收系统及相关电路组成的光谱仪进行了模块化设计,以方便仪器的整体设计、装调和测试。考虑分光测色仪是非成像光学仪器,故提出用光纤来连接各光学模块。根据应用需求提出了光谱仪的主要技术指标,所设计光谱仪很好地完成了球差和彗差的校正。分析了用滤光片消除二级衍射光谱的方法,解决了光纤和光谱仪数值孔径不匹配的问题。研制了光谱仪系统,其外形尺寸为130mm×90mm×45mm。实验测试显示,在狭缝宽度为50μm时,光谱仪各波段的光谱分辨率都可以达到2nm。对光谱仪进行了波长定标,定标精度小于0.2nm,整个工作波段占401个像元,满足1nm的波长输出间隔的设计要求。该光谱仪的可弯曲光纤和电子线路便于整机灵活布局与模块拆卸,同时方便单独测试。所述方法为分光测色仪的整机研制与测试打下了良好的基础。  相似文献   

15.
为了能对自主研制的脑肿瘤手术医用显微成像光谱仪进行光谱定标,设计了由单色仪、钨灯光源、棱镜-光栅-棱镜成像光谱仪及手术显微平台组成的光谱定标系统。采用单色仪波长扫描法,自主开发了相应的光谱定标系统软件,获得了显微成像光谱仪全谱段的光谱数据,完成了数据处理和分析等工作。通过调整光路、单色仪定标、成像光谱仪定标3个步骤实现了系统的光谱定标。定标结果表明:显微成像光谱仪的光谱区大于400~900nm;定标精度高于0.1nm,光谱分辨率高于3nm,各项特征指标均高于设计指标。测试验证实验表明,所建立的光谱定标系统定标精准,结构简单、紧凑,操作简单,符合显微成像光谱仪的实际临床应用要求。  相似文献   

16.
针对不同激光波长激发测试样品所需拉曼光谱范围的差异性问题,同时为了保证拉曼光谱仪的小型化及高分辨率需求,提出一种以Czerny-Turner光路结构为基础的微型拉曼光谱仪,通过Zemax光学设计软件对光谱仪的准直镜、聚焦镜、柱面镜、光栅以及CCD的倾角及距离进行了优化。该仪器激光波长为633 nm,光谱范围为640~800 nm。进一步优化光栅旋转角度并配合聚焦镜,可使此光学系统同时适用于激光波长532 nm、光谱范围540~650 nm和激光波长785 nm、光谱范围790~1 000 nm两个波段。拉曼光谱仪分辨率为0.1 nm,该光谱仪在保证高分辨率的情况下解决了不同波段范围光学结构差异性大而导致光机设计很难整合在一起的问题。  相似文献   

17.
成像光谱仪工程权衡优化设计的光学结构   总被引:3,自引:5,他引:3  
对应用需求、卫星可提供资源和技术能力等方面进行综合工程技术权衡,提出了总体优化的光学结构设计方案。设计了在0.4~2.5 μm工作,焦距为800 mm,焦比为4.5,视场为1.43°的非球面三反射镜望远镜和棱镜色散非球面准直-成像光学结构的新型成像光谱仪,其调制传递函数(MTF)达到0.44~0.62,光谱分辨率为3~23 nm,仪器的总重量约为70 kg。在焦平面器件性能和信噪比等技术指标相同的情况下,如果用光栅或干涉式傅里叶变换光谱仪,则需要FN在3以下,仪器的总重量将>100 kg。取得了成像光谱仪分辨率高、积分时间短,焦平面器件接受的辐射能量弱等参数条件下的权衡优化设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号