首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To enhance the lifetime and reliability of microcomponents, thin microtribological films are applied to microparts. With reduction of the component size, investigation methods for tribological testing must be adapted. This paper studies the microtribological behaviour of thin diamond‐like carbon (DLC) films using different testing methods. To tie in with macroscopic results, to determine friction we used the well‐known pin‐on‐disc test with spherical surfaces of 10 mm diameter under a typical load of 3 N. For investigations of the behaviour under single asperity contact, Atomic Force Microscope (AFM) methods with applied loads of a few hundred micronewtons were used. Investigations on thin DLC films showed that the friction coefficient under single asperity contact is strongly dependent on the applied load and the resulting contact area. Especially for thin films (up to a few hundred nanometres) the friction coefficient is influenced by the substrate material. With decreasing substrate Young's modulus the friction coefficient also decreases. On the other hand, an increase in the abrasive wear resistance was observed using soft substrate materials. In this paper we show that the friction coefficient was also reduced by a simple surface structure. For investigations we used photolithography to create concentric circles in different substrates. This resulted in a behaviour like riding on rails for the pin‐on‐disc test. Depending on the tribological pairing the friction coefficient was reduced to more than 50% of the original value. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
In the present study, the sliding wear resistances of ZrN and (Zr, 12 wt% Hf)N coatings deposited on a hardened AISI D2 tool steel by arc-physical vapor deposition (PVD) technique were examined by a ball-on-disc wear tester. Alloying of ZrN coating with 12 wt% Hf did not change the hardness significantly, but achieved an improvement on adhesion strength and dry sliding wear resistance against steel (AISI 52100-55HRC) and Al2O3 balls.  相似文献   

3.
Abstract

The wear behaviour of polytetrafluroethylene (PTFE) filled with 25% glass and 40% bronze particles was studied on a pin on disc test rig. Solid lubricant composite materials were prepared by compression moulding technique. The wear parameters considered for the study were applied load, sliding speed and sliding distance. The experimental results indicate that the weight loss increases with increasing load, sliding speed and sliding distance, as expected. Sliding distance has more effect on weight loss followed by applied load. The 40% bronze+PTFE composite exhibits better wear resistance compared to other types. The dominant interactive wear mechanisms during sliding of PTFE and its composites are discussed in this paper.  相似文献   

4.
A new method has been developed for tribological testing of thin, hard antiwear coatings, using a ball‐on‐disc tribosystem, under conditions of dry sliding. In this, an Al2O3 ball is pressed against a coated steel disc. Wear debris is removed from the contact zone by a stream of dry argon in this novel method. This improves the stability of the tribological properties and the repeatability of the test results. All test conditions are precisely defined, in particular: the type of motion, air relative humidity, ambient temperature, sliding speed, load, tribosystem spatial configuration, substrate material, substrate hardness and roughness, and coating thickness. The method developed has been used to test various physical vapour deposition coatings (deposited by the vacuum arc method), i. e., single‐layer TiN, Ti(C,N), CrN, and Cr(C,N), and multilayer Cr(C,N)/CrN/Cr and Cr(C,N)/(CrN+Cr2N)/CrN/Cr. It is shown that CrN coatings exhibit the best antiwear properties, and Ti(C,N) the worst. Friction coefficients for CrN and Cr(C,N) coatings are much lower than for the more commonly used TiN. Multilayer coatings have better antiwear properties than single‐layer ones.  相似文献   

5.
The friction behaviour of wet clutches for automatic transmission applications strongly influences the dynamic behaviour of the entire machine or vehicle, including the transmission. The wear, and also the friction curve, determines the life of the clutch. In this research, both SAE II and pin‐on‐disc tests have been used to investigate the wear and friction characteristics of paper friction material. A comparison is made of the friction coefficients and the wear rates obtained on both test rigs. Although the pin‐on‐disc tests failed to reproduce correctly the wear rates of the SAE II tests, they can be used for a qualitative analysis of the influence of material parameters and operating conditions on both friction coefficients and wear rates.  相似文献   

6.
High‐temperature‐resistant self‐lubricating coatings are needed in space vehicles for components that operate at high temperatures and/or under vacuum. Thick composite lubricant coatings containing quasicrystalline alloys as the hard phase for wear resistance can be deposited by a thermal spray technique. The coatings also contain lubricating materials (silver and BaF2 CaF2 eutectic) and NiCr as the tough component. This paper describes the vacuum tribological properties of TH103, a coating of this type, with a very good microstructural quality. The coating was deposited by high‐velocity oxygen fuel spraying and tested under vacuum using a pin‐on‐disc tribometer. Different loads, linear speeds, and pin materials were studied. The pin scars and disc wear tracks were characterised using a combination of scanning electron microscopy and energy dispersive spectrometry. A minimum mean steady friction coefficient of 0.32 was obtained when employing an X750 Ni superalloy pin in vacuum conditions under 10 N load and 15 cm/s linear speed, showing moderate wear of the disc and low wear of the pin.  相似文献   

7.
Laboratory tests can help in the analysis of tribological failures of elements, and improve tribo‐systems by choosing appropriate materials. In order to characterise the friction and wear behaviour of candidate materials, various different test methods have been developed in the past and are still in use. One such method is the reciprocating sliding of a ball against a disc. In the work reported here, the repeatability of friction and wear results was evaluated with ten tests under identical conditions with a steel (100Cr6) or alumina (Al2O3) ball against a steel (100Cr6) disc under unlubricated conditions at room temperature. The influence of ambient humidity on friction and wear behaviour was determined in three additional tests in dry and in moist air, respectively. The repeatability of friction coefficient in normal air was better than 5% for alumina/100Cr6 and 12% for 100Cr6/100Cr6, while the repeatability of volumetric wear was slightly better than 10% for alumina/steel, and slightly worse than 10% for steel/steel. For both couples the coefficient of friction is lowest in moist air and about 50% higher in dry air. The coefficient of wear is also least in moist air and higher by a factor of 3(5) in dry air for tests with a 100Cr6 (alumina) ball.  相似文献   

8.
Versatile and reliable techniques for evaluation of hard thin coatings are necessary for the development and tribological assessment of new coatings. We have proposed a new type of micro slurry‐jet erosion (MSE) test, i.e. a solid particle impact erosion test for swift evaluation of wear properties of hard thin coatings. We are using a new type of MSE test apparatus (pot type tester) that makes it possible to obtain the wear loss per unit mass of erodent, which in this test was alumina particles with an average size of 1.2 µm. Its performance was evaluated by using a Si wafer plate under various test condition. In addition, the MSE tester was demonstrated by evaluating the wear resistance of TiN on high‐speed steel substrate. The new MSE test generates highly reproducible results and is very sensitive to the quality of the coatings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
TiFeN, TiN and TiFeMoN films were deposited on silicon using a dual ion beam system. High resolution Scanning Electron Microscopy (SEM) has been used in conjunction with progressive load nano-scratch testing and nanoindentation to investigate film behaviour in highly loaded sliding and mechanical properties. Nitrogen ion assistance in TiFeN resulted in compositional changes to the films that created a larger fraction of softer FeN phase. Harder films exhibited higher ratios of hardness to modulus (H/Er). At low scratching loads, the mechanical properties of the film itself control nano-scratch behaviour and films with higher H/E and lower plasticity indices are more resistant. At higher scratching load, the failure of harder films with H/Er>0.11 was accompanied by delamination outside the scratch track. It is suggested that hard films with H/Er≤0.11 possess a more optimum combination of hardness and toughness for applications where they will be exposed to high shearing forces and strain in the film in this case is more readily relieved by intergrain cracking.  相似文献   

10.
440C steel thrust ball bearing races lubricated with 1 m thick sputtered films of MoS2 were tested in the unidirectional and oscillatory modes against bare steel balls in moderate (10–4–10–5 Pa 10–6–10–7 Torr) vacuum and in 1 atmosphere of 99.999% pure ( 1 ppm water) N2 in the same unbaked environmental chamber. Over 90% of the residual gases in the chamber vacuum consisted of H2O vapor. The bearings operated in N2 showed substantially longer lives compared to the specimens tested in vacuum. Scanning electron microscope (SEM) tribometry was also performed on an MoS2 film powder-burnished onto a 440C flat. This flat was repeatedly oscillated against bare, hemispherical-tipped 440C pins on fresh wear tracks in the same type of N2 and column vacuum of ~10–3 Pa 10–5 Torr itself containing over 90% residual H2O. The SEM-generated results on the burnished film confirmed the same, atmosphere-dependent difference in wear life observed with the sputtered layers. Varying the moisture content of the burnished flat and its immediate environment by cryosorption predictably manipulated the coefficient of friction and wear life of MoS2. The various possible causes of this perplexing phenomenon are reviewed, and a plausible hypothesis is offered attributing the unexpected wear life reduction to the physico-chemical consequences of residual H2O hydrogen-bonding to the oxidized and/or hydrated edge and basal plane sites of MoS2 in moderate vacuum. The site-specific sorption of water is severely hindered in 1 atm N2 by the gas molecules disrupting the H-bonding mechanism.  相似文献   

11.
This article presents the SEM‐EDX and microFTIR study and the corrosion behavior of new five types of phosphated coatings obtained by coprecipitation in acid aqueous medium of some metal cations, pursuing the influence of the addition of other cations and a moderator of precipitation, on the uniformity and compactness of the layers and on the morphology of dendritic structure of Zn(II) and Fe(II) phosphates. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Y. Pauleau  P. Juliet  R. Gras 《Wear》1997,210(1-2):326-332
Silver, calcium fluoride (CaFx with x = 1.85) and chromium-carbon (Cr3C2) thin films were deposited onto various tribological test specimens by sputtering. The friction properties of sputter-deposited Ag and CaFx single layers as well as Ag/CaFx multilayer films were determined by ball-on-disk tribological tests conducted in room air under various experimental conditions. The tribological properties (friction coefficient and wear rate) of sputter-deposited CaFx films were also determined at 500°C by pin-on-disk tribological tests performed with pin specimens made of cobalt-based alloy (alacrite). Chromium-carbon films sputter-deposited onto alacrite disk and counterfaces were found to be of interest for reducing the formation of alacrite wear debris in the wear tracks; thus reduced friction coefficient and wear rate values were obtained. The friction behavior of sputter-deposited CaFx/Cr3C2 thin bilayer structures and plasma-sprayed (PS) chromium carbide/Ag/BaF2-CaF2 eutectic composite coatings (PS-212 type coatings) was investigated by plane-on-plane tribological tests conducted in room air at 500°C and 700°C. The friction performance of solid lubricant thin bilayer films was compared with that of thick PS-212 type coatings similar to coatings developed by NASA.  相似文献   

13.
The influence of nitrogen concentration on the microstructure, chemical and electronic properties of Fe–N thin films and their tribological behaviour are studied. Increasing the nitrogen concentration from 5% to 12%, results in the decrease in friction coefficient from 0.14 to 0.04, while wear life increases significantly. However, increase in nitrogen concentration to 32% results in the increase in friction coefficient to 0.1 and decrease in wear life. Therefore, lowest friction and longest wear life is observed in the film with 12% nitrogen, which is due to the formation of ε-Fe2N phase having high bond strength and chemically passive surface.  相似文献   

14.
15.
电弧加工因其高放电能量和非接触式加工的特点而在难加工材料去除方面得到了广泛的应用。为研究电弧盘铣加工的加工特性,提出一种基于正交实验的多目标参数优化方法。综合考虑了低转速、低电压条件下,电极转速、工件进给速度、电流、气压和进刀深度等因素对加工材料去除率和电极损耗率的影响,得出了在低转速、低电压条件下电弧盘铣加工多目标优化的最优加工参数组合,提高了电弧盘铣加工的应用性。研究结果为电弧盘铣加工参数的合理制定与加工工艺的优化提供了参考依据。  相似文献   

16.
The basic reason for the use of cutting fluids in machining processes is to increase cutting tool life and to decrease machining costs. An experimental simulation of tribological processes representing rear cutting tool contact was carried out in a ‘block‐on‐disc’ (BOD) tribotester. The coefficient of friction and block wear were measured under boundary (discontinuous fluid film) and elastohydrodynamic (quasi‐continuous fluid film) lubrication conditions for neat and semi‐synthetic cutting oils. Interesting data were obtained concerning a further cutting fluid classification, which is helpful for optimal cutting fluid selection via their antiwear and antifriction characteristics.  相似文献   

17.
18.
Friction tests simulating cam follower sliding conditions were conducted using a pin‐on‐disc test rig. In the case of SAE 5W‐30 class engine oil, the friction coefficient of the combination of steel pins sliding on a steel disc increased from 0.11 to 0.12, while that of steel pins sliding on a diamond‐like carbon (DLC)‐coated disc decreased from 0.12 to 0.10. For 5W‐20 oil containing the friction modifier MoDTC (molybdenum dithio‐carbamates), the friction coefficient of steel pins sliding on a steel disc decreased markedly from 0.12 to 0.04. In contrast, that of steel pins sliding on a DLC‐coated disc decreased more moderately, from 0.11 to 0.08. In both cases, Zn, P, S, and Mo elements derived from ZDDP (zinc dialkyldithiophosphate) and MoDTC additives were not detected on the DLC‐coated disc, while these elements were detected on the steel disc and pins using electron probe microanalysis and X‐ray photo‐electron spectroscopy surface analysis. It appears that a tribochemical reaction film did not form on the DLC material due to its inactive chemical properties. Therefore, an increase in friction due to the formation of the film derived from ZDDP and a decrease in friction due to the formation of the film derived from MoDTC were clearly suppressed in the case of the steel pins sliding on the DLC‐coated disc. It is thought that the tribo‐chemical reaction film was instrumental in reducing friction substantially. The lateral force of the film formed on the steel disc was then measured using an atomic force microscopy lateral force microscopy test. The lateral force of the film resulting from the 5W‐30 oil was much higher than that of the film formed from the 5W‐20 oil with MoDTC. This result coincided well with the results of the friction tests. Judging from these results, it is thought that the high friction coefficient observed for the steel pins on the steel disc for the 5W‐30 oil was caused by the higher shear strength of the film formed from ZDDP. On the other hand, the very low friction coefficient observed for the steel pin‐steel disc combination for the 5W‐20 oil was presumably caused by the formation of a solid MoS2 lubricant from the MoDTC additive.  相似文献   

19.
The surfaces of a heavily loaded ball‐joint were initially covered with a sliding spray, and suffer wear. A solution is found by incorporating ultra high molecular weight polyethylene (UHMWPE) discs with a carbon fibre/epoxy reinforced ring as sliding material into the chairs of the structure. The ball side is covered with a zinc phosphate primer coating. For design purposes the local static and dynamic behaviour of the hybrid UHMWPE discs in contact with steel or Zn‐coated counterfaces should be large‐scale tested in terms of their loading capacity, low friction and wear resistance. Also the influence of creep and wear on friction is examined. After the large‐scale verification tests in laboratory, a good correlation is found with a test in the field. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The present paper deals with a theoretical and experimental study of the co-deposition of spheroidal particles in a metal matrix deposited by autocatalytic chemical deposition (ACD). The 3-D particle size distribution — as measured by image analysis of SEM micrographs of metallographic cross-sections — is related to the size distribution of the starting powder — as measured by photon autocorrelation spectroscopy — through a simple analytical model. The application of the model to the co-deposition of diamond particles in an ACD Ni–P (9 wt.% P) amorphous matrix led to a correct prediction of average volume of embedded particles ( V ¯), coverage factor ( CF ) and number of co-deposited particles per unit volume of deposit ( NV ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号