首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Royall CP  Donald AM 《Scanning》2002,24(6):305-313
Environmental scanning electron microscopy (ESEM) modifies conventional SEM through the use of a partial gas pressure in the microscope specimen chamber. Like conventional SEM, it has the resolution to image structure on the submicron lengthscale, but can also tolerate hydrated specimens if water vapour is used in the specimen chamber. This ability to image aqueous specimens leaves ESEM uniquely placed to study in situ drying in polymer latexes. However, there are two key practical difficulties associated with in situ drying. First, the size of the latex particles: larger latex particles are typically around 500 nm in diameter. Although ESEM can resolve structure on this lengthscale without difficulty, the magnification required results in radiation damage of the specimen due to the electron beam. This means that a given region can be imaged only once during film formation, so the evolution of particular features cannot be followed. Second, the change from ambient temperature and pressure to the ESEM conditions of 7 degrees C and 7.5 torr (100 Pa) can subject the specimen to a very high evaporation rate, which can disrupt film formation. The inclusion of a drop of water in the specimen chamber is shown largely to alleviate this, enabling successful imaging of film formation in the lacquer. Instead of the polymer latex itself, this work concentrates on a matting lacquer with silica inclusions. The silica matting agent particles are 1-10 microm in size, allowing for a lower magnification to be used, massively reducing specimen damage. Furthermore, the contrast during drying is much enhanced in the presence of silica. The images reveal the silica as bright regions against a darker background of polymer and water. Film formation shows the transition from a uniform, featureless aqueous solution to a polymer film with silica particles present on the surface. The appearance of individual silica particles can be followed. The particles are generally revealed quite early, after a few minutes of drying time. As film formation progresses, these same particles appear larger and more distinct. Few new particles are revealed at longer film formation times.  相似文献   

2.
Polymer-modified bitumen emulsions present a safer and more environmentally friendly binder for enhancing the properties of roads. Cationic bitumen emulsion binders containing polymer latex were investigated using confocal laser scanning microscopy. The latex was incorporated into the bitumen emulsion by using four different addition methods and all emulsions were processed with a conventional colloid mill. The emulsion binder films were studied after evaporation of the emulsion aqueous phase. We show how the microstructure and distribution of the polymer varies within the bitumen binder depending on latex addition method, and that the microstructure of the binder remains intact when exposed to elevated temperature. It was found that a distinctly fine dispersion of polymer results when the polymer is blended into the bitumen before the emulsifying process (a monophase emulsion). In contrast, bi-phase emulsion binders produced by either post-adding the latex to the bitumen emulsion, or by adding the latex into the emulsifier solution phase before processing, or by comilling the latex with the bitumen, water and emulsifier all resulted in a network formation of bitumen particles surrounded by a continuous polymer film. The use of emulsified binders appears to result in a more evenly distributed polymer network compared to the use of hot polymer-modified binders, and they therefore have greater potential for consistent binder cohesion strength, stone retention and therefore improved pavement performance.  相似文献   

3.
Glass transitions in confined polystyrene films on a silicon substrate were studied using atomic force microscopy incorporating a thermal tip. Three-dimensional spatial nanoconfinements were achieved by controlling size and boundary conditions of small heated volumes of polymer nanostrands drawn from the polymer surface with the thermal tip, using appropriate loads and temperatures at the tip-polymer contact. Finite element analysis was performed to model mechanical contact and thermal transport, including the effects of contact radius, film thickness, and load on temperature and pressure distributions in the confined volume at the contact. The glass transition temperature (T(g)) was measured by observing the softening of polymers with increasing temperature. The measured surface T(g) exhibited a strong size dependence, while the subsurface T(g) increased with decreasing the distance to the substrate. A large increase in the surface T(g) was observed when the radius of contact was reduced below about 10 nm. The increase in the glass transition temperature at the surface was attributed to the presence of surface and line tension at the nanometer contact, while the enhanced T(g) near the substrate was attributed to the pinning effects that reduces the mobility of the polymer molecules in the film over several hundreds of nanometers away from the polymer-substrate interface.  相似文献   

4.
Environmental scanning electron microscopy has been used to study 'wet' polymer latex films. Comparison of the results obtained by imaging in nitrogen and nitrous oxide gas and water vapour has provided insight into a variety of different contrast phenomena. Notably, it was found that edge definition and fine features could be enhanced by imposing further saturated vapour conditions at the hydrated film surface. Furthermore, by imaging at subzero temperatures in the presence of nitrogen, it was shown that beam damage could be reduced in such sensitive polymeric samples.  相似文献   

5.
The interconnection of triboelectric, segregation-diffusion and tribochemical processes at metal–polymer contact area have been revealed. A system approach allows the methods for control of friction properties of metal–polymer friction assemblies to be developed. These methods are based on data that describe the effect of the triboelectric field on diffusion processes in metal–polymer tribosystems and the formation of friction transfer film. The formation of the transfer film has been studied by IR-spectroscopy, and element content on the grain boundaries–by Auger-spectroscopy.  相似文献   

6.
Thin films of bismuth and iron oxides were obtained by atomic layer deposition (ALD) on the surface of a flexible substrate poly(4,4′-oxydiphenylene-pyromellitimide) (Kapton) at a temperature of 250°C. The layer thickness was 50 nm. The samples were examined by secondary-ion mass spectrometry, and uniform distribution of elements in the film layer was observed. Surface morphology, electrical polarization, and mechanical properties were investigated by atomic force microscope, piezoelectric force microscopy, and force modulation microscopy. The values of current in the near-surface layer varied in the range of ±80 pA when a potential of 5 V was applied. Chemical analysis was performed by X-ray photoelectron spectroscopy, where the formation of Bi2O3 and Fe2O3 phases, as well as intermediate phases in the Bi–Fe–O system, was observed. Magnetic measurements were carried out by a vibrating sample magnetometer that showed a ferromagnetic response. The low-temperature method of functionalization of the Kapton surface with bismuth and iron oxides will make it possible to adapt the Bi–Fe–O system to flexible electronics.  相似文献   

7.
RNA molecules have been much less studied by atomic force microscopy (AFM) than have DNA molecules. In this paper, AFM imaging is presented for two different RNA molecules able to self‐assemble into complex supramolecular architectures. The first one is a molecular dimer of a 230‐nt RNA fragment coming from the RNA genome of a murine leukaemia virus. The monomeric RNA fragment, which appears by AFM as an elongated structure with a mean aspect ratio of 1.4, assembles into a dimer of elongated structures through the formation of a ‘kissing‐loop’ RNA interaction. The second one is a large supramolecular fibre formed of artificial self‐assembling RNA molecular units called tectoRNA. The fibre lengths by AFM suggest that there are 50–70 tectoRNA units per fibre. Some methods and limitations are presented for measuring molecular volumes from AFM images.  相似文献   

8.
We describe an instrument to measure the polymer interdiffusion between donor-labeled and acceptor-labeled latex polymers in a partially wet latex film with fluorescence resonance energy transfer (FRET). It is possible to temporarily arrest the drying process of a wet latex film by sealing the film in an airtight chamber. In our approach, we measure donor fluorescence decays from 0.5 mm diameter spots at various positions across an arrested latex film with time-correlated single photon counting. We interpret the resulting decays with a Monte Carlo simulation of the FRET process and extract information about the extent of polymer diffusion as a function of position on the film. These results enable us to determine the extent of polymer interdiffusion as a function of distance from the wet-dry edge in the latex film. To highlight this device's ability to capture the rapid early stages of latex interdiffusion, we report results from an acrylate copolymer latex.  相似文献   

9.
Many DNA-based devices need to build stable and controllable DNA films on surfaces. However, the most commonly used method of film characterization, namely, the probe-like microscopes which may destroy the sample and substrate. Surface Forces Apparatus (SFA) technique, specializing in surface interaction studies, is introduced to investigate the effects of DNA concentration on the formation of single-stranded DNA (ss-DNA) film. The result demonstrates that 50 ng/μL is the lowest concentration that ss-DNA construct a dense layer on mica. Besides, it is also indicated that at different DNA concentrations, ss-DNA exhibit diverse morphology: lying flat on surface at 50 ng/μL while forming bilayer or cross-link at 100 ng/μL, and these ss-DNA structures are stable enough due to the repeatability even under the load of 15 mN/m. At the same time, an obvious adhesion force is measured: ?6.5 mN/m at 50 ng/μL and ?5.3 mN/m at 100 ng/μL, respectively, which is attributed to the ion-correlation effect. Moreover, the atomic force microscopy (AFM) images reveal the entire surface is covered with wormlike ss-DNA and the measured surface roughness (1.8±0.2 nm) also matches well with the film thickness by SFA. The desorption behaviors of ss-DNA layer from mica surface occur by adding sodium salt into gap buffer, which is mainly ascribed to the decreased ion-ion correlation force. This paper employing SFA and AFM techniques to characterize the DNA film with flexibility and stable mechanical ability achieved by ion bridging method, is helpful to fabricate the DNA-based devices in nanoscale.  相似文献   

10.
A time-resolved method for tip' retraction at micros-scale away from dielectric surfaces has been developed. Analysis of the forces in the system comprising AFM tip, water meniscus, and polymer film suggests that an electrostatic repulsion of the tip from the surface in the double-layered (water and polymer) system, and water condensation in the tip-surface junction are the dominant factors enabling the mechanical work for tip retraction. Nanostructures of 5-80 nm height are formed in polymeric surfaces as a result. This interesting physical phenomenon could be used for nanostructures patterning in polymeric materials at enhanced aspect ratio.  相似文献   

11.
Cantilever‐based optical interfacial force microscopy (COIFM) was applied to the investigation of the mechanical properties of soft materials to avoid the double‐spring effect and snap‐to‐contact problem associated with atomic force microscopy (AFM). When a force was measured as a function of distance between an oxidized silicon probe and the surface of a soft hydrocarbon film, it increases nonlinearly in the lower force region below ∼10 nN, following the Herzian model with the elastic modulus of ∼50 MPa. Above ∼10 nN, it increases linearly with a small oscillatory sawtooth pattern with amplitude 1–2 nN. The pattern suggests the possible existence of the layered structure within the film. When its internal part of the film was exposed to the probe, the force depends on the distance linearly with an adhesive force of −20 nN. This linear dependence suggests that the adhesive internal material behaved like a linear spring with a spring constant of ∼1 N/m. Constant‐force images taken in the repulsive and attractive contact regimes revealed additional features that were not observed in the images taken in the noncontact regime. At some locations, however, contrast inversions were observed between the two contact regimes while the average roughness remained constant. The result suggests that some embedded materials had spring constants different from those of the surrounding material. This study demonstrated that the COIFM is capable of imaging mechanical properties of local structures such as small impurities and domains at the nanometer scale, which is a formidable challenge with conventional AFM methods. SCANNING 35:59‐67, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Oh YJ  Jo W  Kim MG  Kyu Park H  Hyun Chung B 《Ultramicroscopy》2006,106(8-9):775-778
Optical response and topography of fluorescent latex beads both on flat self-assembled monolayer and on a micron-patterned surface with poly(dimethylsiloxane) are studied. Scanning near-field optical microscopy and atomic force microscopy were utilized together for detecting fluorescence and imaging topography of the patterned latex beads, respectively. As a result, the micro-patterned latex beads where a specific chemical binding occurred show a strong signal, whereas no signals are observed in the case of nonspecific binding. With fluorescein isothiocyanate (FITC), it is convenient to measure fluorescence signal from the patterned beads allowing us to monitor the small balls of fluorescent latex.  相似文献   

13.

To reduce the complications of cardiopulmonary resuscitation (CPR) and increase its effectiveness, the quality of CPR must be measured and feedback provided to the CPR practitioner. Although CPR ancillary devices that attach sensors to measure the compression frequency and depth have been used, these devices did not previously capture the parameters necessary to determine whether the compression position was appropriate, or whether the thorax was deformed by fracture or other causes. In this study, we proposed a system for measuring the mechanical impedance of a patient’s thorax using a load cell and an accelerometer, incorporated into a CPR ancillary device; the mechanical impedance measurements enabled monitoring of the characteristics and deformations of the thorax during in vitro experiments using dummies, and in an animal experiment using two pigs. When CPR was performed, sensors attached to the CPR assist device measured the compression force and movement, and then the single frequency elements of force and velocity at chest compression frequency were calculated. The mechanical impedance can be determined by calculating the ratio of the obtained force to the velocity. Dummies with different elastic moduli show differences in mechanical impedance. In the animal experiment using pigs, the mechanical impedance of the pig’s thorax steadily decreased in response to successive chest compressions. The mechanical impedance system proposed in this study may be useful in the development of new methods to rapidly measure the mechanical properties of the human body or other complex structures.

  相似文献   

14.
Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (<3 nm in radius of curvature at the apex) comparable to that of the original Si tip apex. We demonstrate that in non-contact (NC)-AFM measurement, a W-coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip.  相似文献   

15.
Bitumen is a complex mixture of hydrocarbons for which microstructural understanding is incomplete. In an effort to detail this microstructure, a asphalt cement sample (CAP 30/45) was analysed by thermal phase detection atomic force microscopy. Phase contrast and topography images showed that sample morphology is highly dependent on temperature. The ‘bee structure’ changed considerably at temperatures between 50°C and 56°C. A decrease of the oscillation amplitude was observed upon heating and the ‘bees’ completely disappeared at temperatures above 57°C. When the temperature was decreased after melting at 170°C, the ‘bees’ began to nucleate gradually at temperatures of 57°C and its evolution with time was followed. Changes in morphology were compared to thermal analysis results and a model for the ‘bee’ structure was proposed.  相似文献   

16.
Yang F  Wornyo E  Gall K  King WP 《Scanning》2008,30(2):197-202
This paper investigates the thermomechanical formation and recovery of nanometer-scale indents in a shape memory polymer (SMP), studied using a heated atomic force microscope (AFM) tip and hot-stage atomic force microscopy. The material tested is a tert-butyl acrylate (tBA)-based polymer, which has a glass transition temperature of 60 degrees C. The AFM tip forms indents in the polymer in the temperature range 25-250 degrees C. The shape recovery of the indents is studied while the polymer is heated up to 100 degrees C. The temperature required for complete annealing of the indents depends upon the indentation formation conditions, with higher temperature formation corresponding to higher temperature recovery.  相似文献   

17.
挤压式磁流变液阻尼器--转子系统的动力学特性与控制   总被引:8,自引:3,他引:8  
用磁流变液代替常规挤压油膜阻尼器的润滑油,可制成阻尼特性受磁场控制的挤压油膜阻尼器,用于转子系统的振动控制。依据Bingham模型推导了磁流变液挤压油膜的雷诺方程及其解的表达式,给出了油膜流速、压力分布、油膜反力和阻尼器内磁拉力等的计算公式;以磁流变液阻尼器—刚性转子系统为例,理论分析了挤压油膜的力学特性和转子系统的不平衡响应特性;设计和制造了一种用于转子振动控制的挤压式磁流变液阻尼器;试验研究了支承在该阻尼器上的单盘偏置柔性转子系统的不平衡响应特性和控制方法。研究表明,磁拉力可降低一阶临界转速和临界振幅;油膜反力可降低转子系统在无阻尼临界转速处的振幅,并使一阶有阻尼临界转速增大;通过开关控制能使阻尼器具有最佳的减振效果,使转子振幅在全转速区达到最小。  相似文献   

18.
Zhang X  Liu X  Sun J  He S  Lee I  Pak HK 《Ultramicroscopy》2008,108(10):1338-1341
Osteoblast, playing a key role in the pathophysiology of osteoporosis, is one of the mechanical stress sensitive cells. The effects of mechanical load-induced changes of mechanical properties in osteoblast cells were studied at real-time. Osteoblasts obtained from young Wister rats were exposed to mechanical loads in different frequencies and resting intervals generated by atomic force microscopy (AFM) probe tip and simultaneously measured the changes of the mechanical properties by AFM. The enhancement of the mechanical properties was observed and quantified by the increment of the apparent Young's modulus, E(*). The observed mechanical property depended on the frequency of applied tapping loads. For the resting interval is 50s, the mechanical load-induced enhancement of E(*)-values disappears. It seems that the enhanced mechanical property was recover able under no additional mechanical stimulus.  相似文献   

19.
气动力敏机械手指是利用气压测微技术和气膜柔性承载技术,将触觉传感器和普通机械手结合为一体,实现对工件无损伤抓取。测力系统是气动力敏机械手指在线实时检测接触力,研究测力系统的动态性能对检测控制系统的设计具有重要意义。介绍了气动力敏机械手指的结构及工作原理,推导了测力系统的传递函数,给出气膜承载力和刚度的计算方法,并采用MATLAB软件分析了测力系统的动态性能。结论为气动力敏机械手指测力系统的设计提供了理论基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号