首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
针对传统Bouc-Wen模型不能反映压电陶瓷作动器迟滞的非对称特性而导致其补偿控制精度难以提高的问题,提出了一种改进Bouc-Wen模型,通过修改形状控制参数使其能够模拟压电陶瓷作动器的非对称迟滞曲线.利用粒子群优化算法辨识了所需的模型参数,进一步研究了基于模型的前馈补偿控制、前馈加PI反馈补偿控制对于实现高精度位移输出的效果;在开环前馈补偿控制实验中,采用改进Bouc-Wen模型比传统Bouc-Wen模型的控制误差可降低约42%;在前馈加PI反馈补偿控制实验中,采用改进Bouc-Wen模型比传统Bouc-Wen模型的控制误差可降低约20%.研究结果表明:在相同的控制方式下,采用改进Bouc-Wen模型能够得到比传统Bouc-Wen模型更高的轨迹跟踪精度;与单纯采用基于模型的前馈补偿控制相比,采用基于模型的前馈加PI反馈补偿控制可显著提高压电陶瓷作动器的位移输出精度.  相似文献   

2.
宏纤维复合材料(Macro fiber composite, MFC)具有柔性高、驱动力大、机电响应快等优点被广泛应用于柔性结构精密变形控制,但其固有的非对称迟滞非线性特征严重影响控制精度。基于Sigmoid函数的凹凸形特征构造了非对称改进Bouc-Wen模型,采用信赖域反射法和异步粒子群优化相结合的混合算法对模型参数进行辨识,开展MFC作动器前馈线性化控制应用研究。结果表明,改进Bouc-Wen模型能够准确描述MFC作动器非对称迟滞特征,相对经典Bouc-Wen模型,改进Bouc-Wen模型对MFC在0.1 Hz、1 Hz、5 Hz下迟滞曲线拟合的相对均方误差分别降低了73%、71%、52%。非对称修正算子在电压加载和卸载阶段均呈现出凹凸组合修正方式,在电压加载阶段以凹修正为主,卸载阶段以凸修正为主。基于修正Bouc-Wen迟滞逆模型的前馈补偿方法对正弦波和三角波位移跟踪均具有较高的控制精度。  相似文献   

3.
传统Bouc-Wen模型难以精确表征压电执行器固有非对称率相关动态迟滞非线性,因此提出一种广义Bouc-Wen(GBW)迟滞模型用于精确表征压电执行器的迟滞非线性。首先,基于传统Bouc-Wen迟滞模型引入两项非对称项和二阶IIR滤波器表征压电执行器非对称迟滞及高频相位滞后特性,进一步分析了模型参数值与频率变化规律并确定了模型的率相关参数。然后,搭建了基于NI CompactRIO测控系统的压电执行器精密定位实验平台,通过粒子群优化算法完成GBW模型的参数辨识,并对提出的GBW模型进行实验验证。实验结果表明,对于变频率正弦激励信号,GBW模型的最大误差为0.190 6μm,均方根误差为0.043 1μm仅占压电执行器位移行程的0.65%,相较于传统Bouc-Wen(CBW)模型及改进Bouc-Wen(EBW)模型分别下降了82.07%和62.10%。对比CBW模型和EBW模型,所提出的GBW模型精度和宽频性能均有显著提升,并且解析逆模型存在易于控制器设计,有助于实现压电执行器在超精密仪器设备中宽频、高速精密定位。  相似文献   

4.
提出了逆Bouc-Wen前馈控制与反馈控制相结合的复合控制算法,用于改善压电陶瓷驱动器对目标轨迹的跟踪性能。建立了压电陶瓷驱动器的Bouc-Wen迟滞动力学模型,并用粒子群算法(PSO)对该模型的参数进行识别。基于Bouc-Wen迟滞模型,提出了逆Bouc-Wen前馈补偿控制。最后,为消除迟滞模型的不确定性,引入比例积分(PI)反馈控制,并与前馈补偿控制构成复合控制算法。建立了基于dSPACE实时系统的压电陶瓷驱动实验平台,迟滞实验结果表明:压电陶瓷的迟滞误差量几乎为0,线性度高达96.5%;目标轨迹跟踪实验结果表明:复合控制算法的最大跟踪误差为0.180 5μm,均方根(RMS-Root mean square)跟踪误差为0.055 4μm,跟踪精度达到了10-8 m。相比于开环控制、前馈控制及PI反馈控制,提出的复合控制算法能够基本消除压电陶瓷的迟滞非线性,同时具有很好的轨迹跟踪性能。  相似文献   

5.
由于压电致动器(PA)具有高带宽、高纳米位移分辨率和零机械摩擦等优点,其广泛应用于微/纳米操作、微/纳米定位和光学系统。然而,压电致动器的迟滞非线性却严重影响了其跟踪定位精度,甚至引起闭环系统失稳。为了模拟具有不对称特性的压电致动器的滞后特性和频率相关性,使用广义Bouc-Wen模型来描述压电致动器的滞后性并对该模型进行了参数辨识。然后,使用基于该模型的线性化反馈滑模控制器来改善压电致动器的迟滞非线性,最后采用MATLAB对压电致动器的位移与速度进行跟踪控制仿真,并对其位移误差进行仿真,以验证该模型的有效性,其显著提高了压电致动器的位移控制精度,有效提高了系统的鲁棒性,进而可显著提高双光子聚合加工系统的定位精度。  相似文献   

6.
压电陶瓷驱动器(PEAs)是一种多用于在精密仪器仪表中实现高速、高精度定位的智能驱动器。然而,其自身存在迟滞、蠕变等非线性,尤其是迟滞特性严重影响了压电驱动器的的控制精度。针对迟滞建模中的不对称和速率相关问题,提出一种多延时输入Prandtl-Ishlinskii(MDPI)模型,基于传统PI模型引入了一组延时输入来描述迟滞的率相关特性,随后加入了偏移系数用于改善模型的非对称性。最后,在压电微运动平台上采集了1~100 Hz的1 V正弦信号实验数据,并与率相关PI模型和动态延迟PI模型进行了模型精度对比。实验结果表明,相比另外两个动态PI模型,该模型能够更准确地描述PEAs的动态特性和迟滞特性。在50 Hz和100 Hz下,MDPI模型最大绝对误差(MAE)分别为0.0815μm和0.142 9μm,均方根误差(RMSE)分别为0.009 5μm,0.011 9μm。相较二者该模型均方根误差精度分别平均提高了72.46%和64.21%。  相似文献   

7.
压电作动器被广泛应用于高精度定位领域,但是其固有的迟滞非线性会严重影响定位精度。为了准确地描述压电作动器的迟滞特性,提出了一种基于非线性自回归移动平均(NARMAX)的支持向量机(SVM)迟滞模型。为了建立SVM迟滞模型,首先需要将压电作动器的输入输出关系从一个多值映射问题转化为单值映射问题,对比了不同的单值映射对SVM迟滞模型精度及泛化能力的影响,提出了一种基于NARMAX构建单值映射的方法,建立了在全局上具有更高精度的压电作动器SVM迟滞模型。通过减小训练集中所包含输入信号频率的间隔,提高了模型在测试集上的精度。采用交叉验证的方法确定SVM模型中的参数,提高了迟滞模型在全局上的精度和泛化能力。结果表明,相比传统Bouc-Wen模型,所提出的模型在1 Hz处精度提高了8倍,在50 Hz处精度提高了60倍。通过位移跟踪实验,证明了基于SVM迟滞逆模型的前馈+反馈(FF+FB)控制能够有效提高跟踪精度,相较于PID反馈控制,其跟踪误差最多可降低73.9%。  相似文献   

8.
为提高空间望远镜精密稳像系统中压电驱动快摆镜( FSM)的摆动精度,对压电陶瓷执行器迟滞非线性补偿和控制 技术进行研究。 针对压电迟滞的非对称性以及 Duhem 模型求逆过程复杂的问题,对 Duhem 模型中的微分方程进行变换,直 接建立 Duhem 非对称逆迟滞模型作为迟滞前馈补偿器,并利用免疫差分进化算法辨识模型参数。 在 Duhem 逆模型补偿压 电静态迟滞非线性的基础上,引入基于优化参考跟踪的线性二次型高斯(LQG-ORT)控制方法进一步提高压电执行器的动态 定位精度,采用动态迟滞率相关自回归各态历经模型(ARX)建立状态空间方程,用于卡尔曼滤波器预测状态变量和控制器 计算状态变量的最优控制系数矩阵。 实验结果表明:直接建立的 Duhem 非对称逆迟滞模型能有效描述压电执行器非对称逆 迟滞曲线,拟合均方根误差为 0. 635 9 V(0. 5 Hz) ,相对误差为 0. 79% (0. 5 Hz) ;实时跟踪幅值为 24 μm,频率范围 1 ~ 80 Hz 的目标位移信号,LQG-ORT 算法的跟踪误差为 0. 065 5 μm,相对误差为 0. 27% 。  相似文献   

9.
现有的众多基于传统Bouc-Wen改进的压电陶瓷非对称迟滞模型存在参数冗余,降低了模型参数辨识的准确性,而且常用的粒子群算法(PSO)在辨识压电陶瓷非对称迟滞模型参数方面收敛慢且容易陷入局部最优值。为此,首先提出了一种归一化的非对称迟滞模型,采用两个多项式达到非对称效果,利用归一化Bouc-Wen消除参数冗余;然后采用参数和变异策略自适应的差分进化算法进行迟滞参数辨识;建立了相应的测试系统,对压电陶瓷作动器进行了实验研究。结果表明,相比于传统的Bouc-Wen模型,所提出的模型能更精确地描述压电陶瓷实际电压位移曲线,而且消除了参数的冗余,降低了参数辨识的难度。相比于粒子群算法和传统差分进化算法,自适应差分进化算法能更快更精准地找到最优参数值。  相似文献   

10.
为了提高压电微位移平台快速定位的精确度,建立了一种表征压电微位移平台驱动电压与输出位移关系的定位模型。考虑压电工作台在快速、大行程精确定位过程中会受压电陶瓷迟滞特性及本身动态特性的影响,本文采用BoucWen模型描述压电陶瓷迟滞特性,并结合压电工作台的动态特性进行共同建模,使模型同时体现压电工作台的动态特性与迟滞特性。为了验证模型的正确性,搭建了基于压电微位移平台和相关驱动器的实验设备对模型进行了实验验证,并进行了测控程序的二次开发。研究结果表明,与单纯的Bouc-Wen模型相比,提出模型在最大位移输出为40μm,输入电压频率为40Hz时的最大误差由3.04μm下降到了0.67μm,此时最大相对误差为1.68%。得到的结果验证了提出的模型可较好地模拟压电工作台的迟滞特性与动态特性,大大提高压电微位移平台在快速、大行程定位中的精确度。  相似文献   

11.
张泉  尹达一  张茜丹 《光学精密工程》2018,26(11):2744-2753
为提高空间天文望远镜稳像系统中压电快摆镜(Fast Steering Mirror,FSM)的动态性能,对压电执行器(Piezoelectric Actuator,PZT)动态迟滞补偿和控制进行研究。鉴于基于广义Play算子Prandtl-Ishlinskii(PI)模型的求逆复杂性和迟滞曲线的非对称性,构造一种基于广义Stop算子PI逆模型来补偿压电执行器迟滞非线性。采用Hammerstein模型对压电执行器动态迟滞特性进行建模,以广义PI模型和自回归遍历模型(Auto-regressive Exogenous Model,ARX)分别表征Hammerstein迟滞模型中的静态非线性和率相关性,并针对迟滞率相关模型不确定性问题,提出一种前馈补偿和线性二次型Gauss最优控制算法(Linear Quadratic Gaussian,LQG)相结合的复合控制策略。利用自适应差分进化算法(Adaptive Differential Evolution algorithm,ADE)辨识和整定模型及控制器参数。实验结果表明:该动态迟滞模型能够有效描述1~100Hz频率范围内压电执行器迟滞曲线,拟合均方根误差为0.077 1μm(@1 Hz)~0.512 3μm(@100Hz),相对误差为0.31%(@1Hz)~2.09%(@100Hz);实时跟踪幅值为24.5μm的变频目标位移,LQG控制算法的跟踪精度相比于直接前馈控制和PID控制分别提高48.6%和27.02%。  相似文献   

12.
李国平  孙涛  邱辉  陈彬 《光学精密工程》2016,24(8):1991-1999
考虑目前应用压电陶瓷驱动器的伺服刀架只能提供单向驱动力,设计了一种基于双压电陶瓷驱动器的快速伺服刀架。涉及的两个压电陶瓷驱动器分别为刀具的进给和回复提供驱动力,其呈对称布置,用于有效提高刀架的整体刚度。为了对两个压电陶瓷驱动器进行联动协调控制,建立了PI迟滞模型和其逆模型,并设计了相应的联动协调控制方法。利用PI逆模型作为PID反馈控制的前馈环节构成复合控制用于调节快速伺服刀架的输出位移。实验验证了新型快速伺服刀架的响应频率、响应时间、位移响应特性和定位精度。结果显示:新型快速伺服刀架的响应频率为871.86 Hz,响应时间为0.000 45s;三角波信号的最大定位误差为3.366 1μm,误差百分数为7.63%,平均绝对误差为0.698 0μm,误差百分数为1.58%;正弦波信号的最大定位误差为3.244 4μm,误差百分数为7.67%,平均绝对误差为0.930 9μm,误差百分数为2.20%。  相似文献   

13.
设计了一种用于大型光学载荷次镜在轨位姿精密调整的Hexapod型平台机构,并对其进行构型参数优化以及各支撑杆和上下铰点误差限的最优分配。建立了Hexapod平台机构运动学模型和静柔度模型,分析了主要结构参数对机构性能的影响。按照次镜精调机构性能要求,提出了定位精度指标和抗变形指标,建立了以构型参数为变量的优化目标函数,并利用遗传算法对两个单目标函数进行优化。利用加权分配法构造统一约束目标函数,利用遗传算法对其进行多目标优化。然后,建立非线性最优误差分配模型,对各支撑杆和上下铰点进行误差分配。最后,通过对原理样机性能指标的测试验证了上述研究方法的效果。研究结果表明:优化前后动平台定位精度提高了8.3%,抗变形能力提高了62.5%,铰点误差限由2.7μm提高到6.3μm,支撑杆误差限由1.3μm提高到3.2μm。另外,实验测得Z轴相对定位精度为0.6%,静刚度达到41.14N/μm。本研究提高了次镜精调机构的定位精度和静载抗变形能力,有助于缩短设计、加工周期,节约设计、加工成本。  相似文献   

14.
WTYD型压电陶瓷微位移器的迟滞特性建模与实验验证   总被引:5,自引:5,他引:0  
为了模拟WTYD型压电陶瓷微位移器的输出位移与驱动电压之间的迟滞曲线,通过采用Bouc-Wen模型模拟迟滞分量,提出了一种表征WTYD型压电陶瓷微位移器的输出位移与驱动电压之间迟滞关系的Bouc-Wen模型并建立了相应的参数辨识方法。为了验证Bouc-Wen模型及其相应的参数辨识方法的有效性,建立了相应的实验装置并对模型进行了实验验证。研究结果表明,Bouc-Wen模型的最大绝对误差为3.78μm,最大相对误差为5.79%,表明Bouc-Wen模型及相应的参数辨识方法能较好地模拟WTYD型压电陶瓷微位移器的迟滞特性。  相似文献   

15.
为解决目前高速机构存在的高速与高精度之间的矛盾,研究了高速并联测量机的柔性问题。应用弹性梁运动学理论和Galerkin模态截断法推导了一维弹性梁运动学变形位移模型;以欧拉-贝努利梁为假设,应用Hamilton原理建立了考虑中线变形的柔性结构耦合动力学模型。最后,基于中线耦合动力学模型,测试了不同速度下弹性振动产生的误差,提出了通过调节黏滞摩擦系数来降低振动耦合误差,进而提高测量精度的方法。基于仿真实验验证了提出方法的有效性和可行性。结果表明:在忽略结构误差前提下,角速度为300rad/s时产生的横向一阶振动耦合误差最大值为28.6μm;合理调整黏滞摩擦在0.4~0.5时,振动耦合误差降低至15μm以内,相比调整前误差降低了13.6μm。提出的方法为进一步解决高速与高精度之间的矛盾和研究高阶弹性振动与精度的耦合机理提供了理论基础。  相似文献   

16.
压电陶瓷执行器的类Hammerstein模型及其参数辨识   总被引:1,自引:0,他引:1  
针对压电陶瓷执行器的迟滞非线性对压电陶瓷精密定位的影响,提出了应用类Hammerstein模型对压电陶瓷执行器进行建模的方法.建立了压电陶瓷执行器的迟滞模型并且描述其频率相关性.利用类Hammerstein模型把压电陶瓷执行器看成静态迟滞模型和动态二阶系统的串联,其中静态模型由分类排序的Preisach模型进行描述,二阶系统应用遗传算法辨识其参数.实验结果表明:加入二阶系统后,类Hammerstein模型对频率的相关性有较大增强,其误差相应地大幅降低,在800 Hz时平均绝对误差为0.339 2 μm;丽由Prcisach建立的迟滞模型的误差随着频率的增大而大幅增大,在800 Hz为0.888 1 μm.  相似文献   

17.
针对高功率激光物理装置中的靶自动准直实验平台,提出了一种基于三路显微视觉的高精度靶位姿控制方法。该方法采用基于图像的显微视觉控制策略,通过对送靶机构的主动运动控制,实现了图像雅可比矩阵的在线自标定;利用增量式PI控制方法对送靶机构进行控制,实现靶的快速定位及姿态调整。本文对比了基于图像的显微视觉控制和之前研究中所提出的基于位置的显微视觉控制两种方法。其中,基于图像的控制方法靶的定位误差为0.07μm,姿态调整误差为0.02μrad;而基于位置的控制方法靶的定位误差为0.16μm,姿态调整误差为0.07μrad。实验结果表明:基于图像的显微视觉控制方法对系统中的运动学误差、视觉标定误差等因素具有较好的鲁棒性,靶定位及姿态调整的精度高且稳定性好。  相似文献   

18.
现有的定参数Bouc-Wen模型由于无法表征压电执行器迟滞具有的频移和时变性,极易产生较大的模拟误差。为了精确地模拟压电执行器的迟滞特性,本文建立了压电执行器的Bouc-Wen模型,并采用递推最小二乘在线辨识方法来实时辨识Bouc-Wen模型的参数。为了避免出现数据饱和现象,使用限定记忆来限定辨识方法所使用的数据组数。为验证该辨识方法的有效性,建立了相应的实验系统对其进行实验验证。实验结果表明,限定记忆递推最小二乘在线辨识方法能使Bouc-Wen模型也呈现频移和时变特性。以100 Hz的驱动电压为例,其最大绝对模拟误差从1.38μm降为0.51μm。因此,与传统的离线参数辨识方法相比,限定记忆递推最小二乘在线辨识方法能够有效地提高Bouc-Wen模型的模拟精度。  相似文献   

19.
根据新型电液伺服阀的驱动要求,设计了叠堆式超磁致伸缩致动器(SGMA),为补偿其固有的非线性,提高位移输出精度,研究了SGMA的控制策略,并对控制策略进行了仿真和实验验证。首先,采用永磁体和GMM棒交替排布的结构形式设计了SGMA,有助于提高偏置磁场的均匀性;然后,根据SGMA的结构特点,将其视为多自由度振动系统,建立了系统的位移输出模型;接着,在输出模型的基础上,结合模型预测控制与滑模控制策略,设计了模型预测滑模控制器;最后,进行了控制策略仿真和实验验证。实验结果表明,模型预测滑模控制器能够实现SGMA的精密控制。在阶跃控制实验中,系统稳定时间低于1.5ms,无超调和稳态误差;在正弦控制实验中,系统最大控制误差约为0.83μm,相对值约为6.9%,证明了控制策略的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号