首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对高频工件种类多、类间相似度较高造成的识别准确率低的问题,提出一种联合损失监督的深度学习识别算法。搭建基于卷积神经网络的图像特征向量编码模型,采用角度余量损失替换SoftMax损失,以减小工件类内特征之间的距离,完成同类工件的鲁棒性表示;引入隔离损失以增大异类工件特征之间的距离,实现异类工件的良好性区分。实验结果表明:该方法相较于传统的图像识别方法,识别准确率更高;相较于单一的角度余量和隔离损失,识别准确率分别提高了3.97%和13.88%。  相似文献   

2.
为检测生产线中产品的表面缺陷,提出一种基于卷积神经网络快速区域标定(Faster R-CNN)的缺陷检测方法,用于识别缺陷类型并标记出缺陷位置。预处理阶段提出区域规划方法粗略裁剪出缺陷主体,以避免产生大量冗余窗口,从而提升检测速度和精度。所提算法结合数据扩充方法增加了图像数量,通过划分K折交叉验证数据集改善了算法的鲁棒性;同时,将稀疏滤波思想融入卷积神经网络,提取双重深度特征作为Faster R-CNN的输入,提升了Faster R-CNN位置检测和识别的精度。通过油辣椒灌装生产线的封盖面典型缺陷检测验证了所提方法的可行性。  相似文献   

3.
针对自主驾驶车辆在真实驾驶环境下对低辨识目标的识别问题,提出了基于多模态特征融合的目标检测方法。基于Faster R-CNN算法设计多模态深度卷积神经网络,融合彩色图像、偏振图像、红外图像特征,提高对低辨识目标的检测性能;开发多模态(3种)图像低辨识度目标实时检测系统,探索多模态图像特征融合在自动驾驶智能感知系统中的应用。建立了人工标注过的多模态(3种)图像低辨识目标数据集,对深度学习神经网络进行训练,优化内部参数,使得该系统适用于复杂环境下对行人、车辆目标的检测和识别。实验结果表明,相对于传统的单模态目标检测算法,基于多模态特征融合的深度卷积神经网络对复杂环境下的低辨识目标具有更好的检测和识别性能。  相似文献   

4.
针对自主驾驶车辆在真实驾驶环境下对低辨识目标的识别问题,提出了基于多模态特征融合的目标检测方法。基于Faster R-CNN算法设计多模态深度卷积神经网络,融合彩色图像、偏振图像、红外图像特征,提高对低辨识目标的检测性能;开发多模态(3种)图像低辨识度目标实时检测系统,探索多模态图像特征融合在自动驾驶智能感知系统中的应用。建立了人工标注过的多模态(3种)图像低辨识目标数据集,对深度学习神经网络进行训练,优化内部参数,使得该系统适用于复杂环境下对行人、车辆目标的检测和识别。实验结果表明,相对于传统的单模态目标检测算法,基于多模态特征融合的深度卷积神经网络对复杂环境下的低辨识目标具有更好的检测和识别性能。  相似文献   

5.
基于合成孔径雷达SAR的目标识别在军用和民用领域正发挥着越来越重要的作用,而特征提取是SAR目标识别过程的关键环节,提出基于深度卷积神经网络的SAR目标识别方法,建立深度卷积神经网络模型,提取并展示目标的多维度层级特征,并利用卷积神经网络的自我学习能力,解决特征选择问题,实现SAR目标自动识别。针对MSTAR数据集的试验表明,识别率达到93.99%,相较于传统的单维度特征模式识别方法,识别性能更加优异。  相似文献   

6.
针对传统轴承故障诊断方法依赖人工进行特征提取时效率低且难以处理大规模数据等问题,将卷积长短时深度神经网络(CLDNN)引入轴承故障诊断并进行改进,提出一种基于注意力机制的卷积门控深度神经网络(Attention-CGDNN)的滚动轴承故障诊断模型,该模型将卷积神经网络、门控循环单元和全连接神经网络有效融合以实现滚动轴承信号特征提取,并加入注意力机制使网络更专注于重要特征,最后通过Softmax分类算法实现滚动轴承故障诊断。采用CWRU和XJTY-SY轴承数据集的验证结果表明,Attention-CGDNN模型具有训练参数少,训练难度小,收敛速度快和识别精度高的特点,特征提取能力更强,故障诊断性能优于传统模型。  相似文献   

7.
为了判断高铁线缆扣件的装配是否正确,这里采用一种基于迁移学习的卷积神经网络的算法对高铁线缆扣件装配进行检测.首先将预训练的网络与目标检测算法相结合,建立完整的装配检测网络,然后对制作好的数据集进行训练和测试.实验结果表明,相比传统对象识别的方法,该方法不仅提高了工件装配检测的准确度,还保证了工业检测中对实时性的要求.另外,由于卷积神经网络可以获取工件图像的深层特征,从而使得目标检测算法更加稳健,更能适应光照、灰尘等环境噪声的变化.  相似文献   

8.
在荧光磁粉缺陷检测中,为快速有效地对金属轴上的点状、线型以及摩擦型缺陷进行分类检测,引入了深度学习技术,并与图像处理技术结合设计了一种改进型金属轴表面缺陷检测系统,克服了传统识别方式人工选定处理区域的局限性。利用基于YOLOv3算法的神经网络模型,对CCD相机获取的轴表面图像数据集进行训练和测试,对不同缺陷进行精确目标识别;采用图像处理技术对识别的目标进行缺陷定量分析。实验结果表明:该方法对不同缺陷类型能进行有效识别,在检测精度与检测效率上具有较高的提升。  相似文献   

9.
为快速、准确地检测工业生产中工件表面产生的缺陷,提出了一种基于Yolo V3的工件表面缺陷检测方法。该方法以DarkNet卷积模型作为特征提取网络,通过引入数据增强方法防止产生过拟合现象,并针对工件表面缺陷形状单一、缺陷尺寸普遍偏小的特点改进了Yolo V3网络的特征融合方式,减少了冗余候选框的数量,提升了算法性能。以环形工件作为检测对象搭建了实验平台。实验结果表明,所提方法能克服人工提取特征的局限性,检测精度和检测速度均满足实际生产要求。  相似文献   

10.
为解决常规深度学习方法检测轮毂内部缺陷存在模型尺寸大、参数多和精度低等问题,提出一种轻量化YOLOv4的轮毂内部缺陷检测算法。该算法采用MobileNetV3替换YOLOv4的主干特征提取网络,并利用深度可分离卷积模块对YOLOv4的PANet(path aggregation network)模块中的传统卷积进行了替换。同时,在PANet特征加强网络中加入通道注意力机制(SE)模块,提高了轮毂内部缺陷目标的识别精度。测试结果表明,所提算法检测精度为90.23%,权值文件为45.2 MB,检测速率为68.38帧/s。相较于常规模型性能有所提升,更适用于轮毂内部缺陷的快速、准确检测。  相似文献   

11.
针对现有带钢表面缺陷检测方法准确率低、特征泛化性不强、参数多、识别速度慢等缺陷,基于卷积神经网络,采用DenseNet网络的密集连接算法解决梯度消失和梯度爆炸问题,堆叠式空洞卷积扩大卷积核感受野,深度可分离卷积减少网络参数量,提出一种用于带钢表面陷检测的深度神经网络模型Ds-DenseNet算法。以NEU带钢表面缺陷数据集为基础缺陷样本,加入正样本,并对其进行数据增强操作,创建AUG-NEU数据集,本算法在AUG-NEU数据集上的测试精度高达99.38%,参数量为117958,仅占DenseNet121和ResNet50参数量的1.7%和0.5%,识别速度高达1.3ms/frame,分别是DenseNet121、ResNet50识别速度的2.3倍和2倍,完全可以满足带钢生产线实时检测的需求。  相似文献   

12.
针对航天密封圈表面缺陷人工检测效率低、传统图像处理检测算法通用性差的问题,提出了两种基于深度学习的密封圈表面缺陷检测算法。首先,针对缺陷大部分为小目标的特点,选取对小目标较敏感的RetinaNet网络作为检测算法的基本架构,通过在RetinaNet网络中引入轻量级网络MoGaA构建出MoGaA-RetinaNet算法。然后,为了提高检测精度,在MoGaA-RetinaNet基础上,用分解卷积模块代替MoGaA骨干网络中的深度卷积构建了newMoGaA骨干网络,设计出newMoGaA-RetinaNet算法。最后,在测试集上的实验结果表明,MoGaA-RetinaNet算法比RetinaNet算法检测速度更快,但检测准确率略低;而newMoGaA-RetinaNet算法实现了检测精度与检测速度的良好平衡,比RetinaNet算法准确率提升4.5%,达到92%,检测速度提升55%,达到31 frame/s,网络参数量减少50%。所设计的newMoGaA-RetinaNet算法可以实现密封圈表面缺陷的快速准确检测。  相似文献   

13.
针对传统故障识别方法不仅过分依赖专家经验对故障特征进行提取且识别准确率不高的问题,在深度学习理论基础上,提出了一种将一维卷积神经网络与SVM分类器相结合的改进深度卷积神经网络,实现调压器“端到端”的故障识别。首先,介绍了传统卷积神经网络结构;其次,将改进后的一维卷积神经网络与SVM相结合,提出了基于1-MsCNN-SVM算法的调压器故障识别模型,并对模型的组成部分进行了介绍;然后,通过对比实验确定了模型的卷积核长度和卷积层组数;最后,为验证模型的有效性,基于燃气调压器故障数据集,开展了燃气调压器故障识别研究。研究结果表明,改进后的1-MsCNN-SVM算法故障识别准确率高达99.20%,模型具有较好的分类准确率。  相似文献   

14.
具有复杂纹理的多晶硅晶片颜色差异检测是太阳能电池片制造过程中的一个挑战。针对传统的色差检测算法不适用于颜色差异类别变化大的场合,且分类结果不精确的问题,基于不同分量的颜色特征提出了一种多分量卷积神经网络的检测算法。通过分析多晶硅晶片图像在HSV颜色空间的特征分布,发现颜色特征在H、S和V分量中表现不同;基于全卷积神经网络,通过评估模型深度和卷积核尺寸大小对检测结果的影响来搭建最佳的网络结构;为了增强对不同颜色差异特征的区分能力,基于最佳的网络模型,构建了一个多分量的卷积神经网络模型。实验结果表明,多分量卷积神经网络的准确率、MCC值和F1Score值分别为92.28%、95.45%和94.03%,相比其他算法具有更高的检测精度。  相似文献   

15.
卷积神经网络在图像处理中的应用越来越广泛,针对图像处理技术手段在玻璃生产表面缺陷有效检验,分析了基于卷积神经网络的机器学习原理与方法,提出一种基于多尺度卷积神经网络(MCNN)图像识别模型,将MCNN模型在玻璃表面缺陷识别中进行应用实践研究,通过采用不同的算法模型和分类器进行对比实验,并运用混淆矩阵和F1值来评估学习器性能。实验结果表明,所设计的MCNN均比传统卷积神经网络(CNN)识别方法的准确率较高,尤其是在划痕缺陷和杂质缺陷图像的识别准确率上提高了较大的幅度,F1值均提高了5.0%以上,在玻璃缺陷检测的整体识别准确率上较优。  相似文献   

16.
《机电工程》2021,38(2)
针对机械加工件表面缺陷检测问题,对工件表面缺陷种类、缺陷位置进行了研究,对深度学习中的目标检测算法进行了归纳分析,提出了一种基于DSSD模型的机械加工件表面缺陷检测方法。该方法首先利用扫描电子显微镜获取了不同工件、不同位置的表面缺陷图像,建立了工件表面缺陷数据集,并对数据集进行了扩充;然后将DSSD网络模型反卷积模块的网络层数进行了简化,从而降低了计算复杂度;最后利用简化后的DSSD模型完成了对数据集的训练和测试。研究结果表明:DSSD模型的检测效率高于YOLO、Faster R-CNN和SSD这3种模型,能够更准确、快速地检测工件表面缺陷,为实际工业场景下的缺陷检测提供了新的思路。  相似文献   

17.
为解决低照度下工件表面粗糙度等级识别正确率低的问题,提出一种基于同态滤波和深度卷积模型的低照度工件表面粗糙度等级识别的方法。该方法通过对不同照度下工件表面粗糙度图像进行等级识别,确定了同态滤波器的最优参数值,再将图像从RGB空间转换到HSV空间,在对V(亮度)分量进行同态滤波处理后,再将图像转回RGB空间并通过设计好的深度卷积模型对图像进行识别。实验结果表明:图像的亮度对比度得到了改善,图像的纹理细节更加显著;该方法简单、有效,对低照度工件表面粗糙度等级识别有很好的效果,识别正确率达到95%以上。  相似文献   

18.
为了解决传统水果图像分类识别算法人工提取特征的缺陷,将卷积神经网络应用到水果图像识别上,基所创建的数据集,参照经典的卷积神经网络模型Le Net-5结构,提出更适合本数据集的卷积神经网络结构,首先对水果数据集进行分类标签,将苹果、梨、橙子、橘子、桃子分别标记为0、1、2、3、4,然后将图片分批次投入模型训练,该模型构建了一个输入层、两个卷积层、两个池化层、两个全连接层和一个输出层。卷积神经网络通过底层提取特征,再进一步更深层次提取特征,最后得到目标的分类。实验结果表明,所提出的卷积神经网络结构不仅在数据集上取得了较高的识别准确率,而且与传统的水果图像分类识别算法相比较,卷积神经网络避免了人工提取特征的繁琐过程。  相似文献   

19.
针对传统智能故障诊断依赖于人工经验进行特征提取和传统卷积神经网络(Convolutional neural networks, CNN)参数过多、训练量过大且无法充分利用时间序列信息的缺点,提出一种基于改进一维卷积神经网络与双向门控循环单元的深度学习新算法。首先,该方法利用一维卷积神经网络自提取能力进行特征提取,同时设计了一个全局均值池化层替换传统卷积神经网络的全连接层,减少参数数量;其次,引入双向门控循环单元学习特征信号中的时间序列关系;最后,通过支持向量机替换传统CNN中的Softmax层进行故障分类,进一步提高诊断的准确率。实验表明,该方法将诊断的准确率提升至99.8%,并且加快了诊断的速度。通过与其他方法的对比,证明了该方法有着更高的准确率,更快的诊断速度,更好的鲁棒性。  相似文献   

20.
为了实现金属灭弧栅片表面缺陷的自动检测,引入了CCD成像系统并提出了表面缺陷检测三步法:第一步对原始图像进行去噪,第二步将灭弧栅片从背景中提取出来,第三步利用分类器对缺陷产品进行识别。提出了基于方向梯度直方图(HOG)与Gabor特征结合的图像特征提取算法,与传统的基于HOG和基于Gabor特征的算法相比,多分类支持向量机的训练结果显示本方法识别率分别提高了13%和7%。通过设计卷积神经网络框架对缺陷产品进行检测,结果显示正确率为93%。在二分类情况下对支持向量机和卷积神经网络的分类性能进行了比较,结果显示卷积神经网络性能更优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号