首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
钝尾缘风力机翼型气动性能计算分析   总被引:4,自引:0,他引:4  
钝尾缘风力机翼型有较好的结构和气动性能,是目前多被用于大型风力机叶片靠近轮毂区域的选定翼型.但钝尾缘翼型也有缺点,易产生大的脱流涡,这会降低叶片的气动性能.为了更好地研究钝尾缘翼型的性能,以了解其气动性能的降低能否与其结构性能的优化相匹配.采用计算流体动力学(Computational fluid dynamics,CFD)方法,对薄尾缘翼型S809和改进的钝尾缘翼型S809-100的性能进行模拟和对比,结果表明相对于薄尾缘翼型,钝尾缘翼型可以增大断面的最大升力系数和升力曲线斜率,并可以降低翼型污染对翼型升力影响的敏感度.  相似文献   

2.
随着风力机向大型化发展,为有效提升风力机叶片的性能以及结构强度,将钝尾缘翼型应用于风力机叶片设计。以NACA639XX系列翼型为基准翼型,通过Hicks-Henne型函数和钝尾缘函数对翼型进行参数化拟合,使用多岛遗传算法优化得到层流钝尾缘翼型族(USST-XXX)。将此翼型族中相对厚度为21%的USST-211翼型与NACA63921层流翼型替换NREL PhaseVI叶片截面的S809翼型,建模得到两种三维风力机叶片,采用数值模拟的方法,对这两种叶片不同风速下的流场进行分析,并与NREL Phase VI风力机叶片的气动性能进行对比。数值模拟结果表明,在额定风速附近,采用层流钝尾缘翼型所构造的新叶片风力机的风能利用系数高于其他两种叶片。研究结果表明优化得到的层流钝尾缘翼型族可以有效提升风力机气动性能,在大型水平轴风力机叶片设计方面具有良好的应用前景。  相似文献   

3.
钝尾缘风力机翼型目前被多数用于大型风力机叶片叶根与最大弦长处,这是因为气动上,钝尾缘翼型能够提高升力系数斜率、降低翼型不敏感性;而结构上,钝尾缘翼型与相同厚度翼型相比增加了截面面积和转动惯量[1],论文依据钝尾缘特点,提出设计钝尾缘翼型方案,并以58米长度叶片为例,设计钝尾缘翼型形状,以及此区域主模型的分模方式,完成三维模型建立,为后续有限元建模及模具加工制造提供基础。  相似文献   

4.
基于NACA0012对称翼型,设计了应用于垂直轴风力机的两段式翼型,并进行几何建模。在两段式翼型的动态气动性能研究中,通过CFD计算得到了垂直轴风力机运行时周边流场分布情况。流场涡量分布显示了风力机翼型尾涡随方位角的变化关系,分析了垂直轴风力机整体尾涡形成过程,同时找出了垂直轴风力机翼型尾涡的普遍特性。将相对坐标建立在翼型上整理得到了翼型的升阻力特性。同静态特性相比,动态升阻力有其明显的环形特征,在静态升阻力系数周边形成环状的分布曲线。  相似文献   

5.
基于混合改型理论的风力机翼型参数化方法   总被引:3,自引:0,他引:3  
翼型的参数化表达方法是风力机翼型优化设计理论中最基础的部分.基于此,研究由基于泛函的儒科夫斯基变换理论建立的翼型参数化集成表达方法和SOBIECZKY尾缘改型方法在优化过程中的特点与不足,提出一种混合式尾翼型缘改型方法.建立采用最优保存策略的遗传算法优化模型,以Xfoil作为目标函数流体力学求解器,使用涉及的几种参数化方法,对RAE2822和NACA63215初始翼型进行优化设计.优化结果表明,混合式尾缘改型方法有效地克服了上述泛函变换方法和SOBIECZKY尾缘改型方法的不足之处,其与泛函变换方法的结合能够全面而有效地控制翼型,特别是尾缘部分的形状,优化所得的翼型具有良好的气动性能.  相似文献   

6.
利用粒子群算法结合XFOIL软件,进行了钝尾缘翼型型线优化设计。平移优化后,在翼型吸力面距前缘0.1c(c为弦长)处添加一高0.015c、宽0.04c的凸台,得到表面粗糙钝尾缘改型,并数值研究其升阻力系数、升阻比、压力系数和流场特性。结果表明:粗糙S812翼型钝尾缘优化后,尾缘厚度为0.039 8c,尾缘厚度在上下翼面的分配比为1∶13.16;升力系数在计算攻角范围内显著增大,升阻比在17.2°攻角之前显著增大,最大升阻比增大明显;钝尾缘处的漩涡对吸力面的气流造成下洗作用。  相似文献   

7.
针对翼型的相对厚度对翼型气动性能影响,以相对厚度分别为21%、25%、30%、35%的DU21、DU25、DU30、DU40四种翼型作为研究对象,采用网格划分软件Gambit对翼型流场划分网格,采用Fluent14.0对翼型进行气动性能分析,研究了相对厚度对翼型气动特性的影响规律。研究表明,翼型的气动性能受翼型相对厚度的影响较大,翼型最大升阻比随翼型的相对厚度增大而减小,翼型的最大升力系数及失速攻角随相对厚度的增大而增大。研究结果对后续的风力机叶片的设计和叶片优化具有一定的参考价值和指导意义。  相似文献   

8.
为了研究垂直轴风力机的叶片气动性能,利用流固耦合法模拟了垂直轴风力机在实际工况下的气动载荷分析,模拟结果表明,由于翼型后部较薄,受到的变形应力最大。为了避免因叶片变形而引起风力机整体气动性能下降,提出了通过加大翼型后部厚度的方案来提高叶片的强度,并通过数值模拟对改进后的翼型做了气动性能分析,得出了适当的增加翼型后部厚度,并不会对翼型气动性能造成太大的影响,验证了此方案的有效性。这些研究结论为今后垂直轴风力机的设计制造提供了一定的参考依据。  相似文献   

9.
《流体机械》2013,(3):29-33
为了直观形象地探讨水平轴风力机叶片翼型的气动特性,利用计算流体力学软件FLUENT对水平轴风力机叶片常用翼型FFA-W3-211,FFA-W3-301和NACA63-215进行了数值模拟,并与试验数据进行对比和分析,验证数值模拟的可靠性。有利于了解风力机翼型的气动性能,为风力机叶片翼型选型和叶片翼型设计和研发提供重要依据。  相似文献   

10.
随机风况下风力机翼型结冰对气动特性的影响研究   总被引:3,自引:0,他引:3  
风力机叶片表面结冰会影响风力机风能吸收效率及安全性。采用计算流体力学(CFD)可以模拟叶片表面结冰过程及其对风力机气动性能的影响。但传统的CFD模拟不能考虑来流风况的随机性。本文采用FENSAP软件模拟了NREL S825翼型表面的结冰过程,采用雷诺平均NS (RANS)模拟研究了结冰对该翼型气动特性的影响。为了研究来流风况的随机性对结冰过程及翼型气动特效的影响,基于概率配置点的非嵌入式多项式混沌方法与RANS模拟进行耦合,研究来流风速和攻角为高斯分布的随机参数时翼型表面冰型的变化,获得了冰型变化的统计特性,以及结冰后翼型气动性能的响应特性。研究结果表明,较洁净翼型相比,结冰后的翼型气动性能下降严重。与攻角的波动相比,来流风速的不确定波动对结冰后翼型的气动性能影响更大。大攻角下,确定性计算会低估攻角对结冰的影响,进而低估对升力系数的影响。风速和攻角的耦合作用削弱了不确定性对气动特性的影响。  相似文献   

11.
研究吸力面存在合成射流的情况下,钝尾缘翼型TR-4000-2000流场结构的变化及其升阻力系数等气动特性参数的变化趋势。在相同射流入口速度条件下,采用计算流体力学软件Fluent对相同来流速度不同攻角情况下翼型流场进行非定常数值模拟计算,分析射流前后翼型升阻力系数变化及翼型表面压力的波动状况;在此基础上,对不同射流频率和不同射流速度情况下翼型流场进行模拟计算,寻求最佳射流参数。结果表明,由于射流及尾缘涡的相互作用导致翼型的升阻力特性不断变化,钝尾缘翼型吸力面合成射流有明显的增升减阻效果,在15°攻角时尤为明显,升力系数提高约40%,阻力系数减小约25%。在量纲一射流速度和量纲一射流频率均为1时,射流对翼型的增升减阻效果最佳。  相似文献   

12.
We demonstrate the effectiveness of semi-empirical Brooks, Pope and Marcolini model and hybrid large eddy simulations in calculating the blunt trailing edge wind turbine noise at higher Reynolds number conditions. The 4 million element meshes of sharp and blunt trailing edge airfoils were tested at a Reynolds number of 3.2 million and an angle of attack of 4 degrees. The predicted airfoil self-noise by the modified semi-empirical formula with a low frequency directivity function and an additional term for large thickness ratio was compared to the experiments. The sound pressure level spectra from the hybrid large eddy simulation show that the predictions agree well with experimental measurements at the same observer location in the peak frequencies of the blunt trailing edge noise and sound pressure level rates of change at lower frequencies are also similar to experiments. The modified semi-empirical formula and the hybrid large eddy simulation can be considered as promising tools for high vorticity flow problems, especially for flatback airfoils for use on large wind turbines.  相似文献   

13.
为解决NACA65系列翼型叶片后缘轮廓线内切圆半径收敛至0引起的铸造工艺问题,采用三次多项式函数生成叶片后缘厚度函数,精确调整叶片后缘末端厚度.基于Ansys软件对不同叶片后缘厚度的风机进行流体仿真,并分析其气动性能与静力结构特性.结果表明叶片后缘增厚使得叶片附面层分离损失增加,尾迹与叶栅主流区的掺混损失增大.叶片载荷...  相似文献   

14.
A 2D unsteady numerical simulation with dynamic and sliding meshing techniques was conducted to solve the flow around a threeblade Vertical axis wind turbine (VAWT). The circular wakes, strip-like wakes and the shedding vortex structures interact with each other result in an extremely unstable performance. An airfoil with a trailing edge flap, based on the NACA0012 airfoil, has been designed for VAWT to improve flow field around the turbine. Strategy of flap control is applied to regulate the flap angle. The results show that the flapped airfoil has an positive effect on damping trailing edge wake separation, deferring dynamic stall and reducing the oscillating amplitude. The circular wake vortices change into strip vortices during the pitch-up interval of the airfoils. Examination of the flow details around the rotating airfoil indicates that flap control improves the dynamic stall by diminishing the trend of flow separation. Airfoil stall separation has been suppressed since the range of nominal angle of attack is narrowed down by an oscillating flap. Vortices with large intensity over rotational region are reduced by 90 %. The lift coefficient hysteresis loop of flapped airfoil acts as an O type, which represents a more stable unsteady performance. With flap control, the peak of power coefficient has increased by 10 % relative to the full blade VAWT. Obviously, the proposed flapped airfoil design combined with the active flow control significantly has shown the potential to eliminate dynamic stall and improve the aerodynamic performance and operation stability of VAWT.  相似文献   

15.
Sectional aerodynamic design optimization was performed to enhance the aerodynamic performance of horizontal axis wind turbine rotor blades based on a computational fluid dynamics technique. The proposed sectional optimization framework consists of airfoil section contour modeling by the PARSEC shape function and a modified feasible direction search algorithm. To enhance the aerodynamic performance of wind turbine rotor blades, the objective of the design framework was set to maximize the lift-over-drag ratio for each design section. A two-dimensional Navier-Stokes flow solver coupled with a transition turbulence model was used to evaluate the aerodynamic performance during the iterative design optimization procedure. The sectional flow conditions were extracted from the flow of a three-dimensional rotor blade configuration. The design framework was applied to the National Renewable Energy Laboratory Phase VI rotor blade. The design optimization was conducted at nine spanwise sections of the rotor blade. To validate the present methodology, the aerodynamic performances of the original baseline rotor and the rotor after the design optimization were compared by using a three-dimensional Navier-Stokes flow solver. It was found that approximately 11% of torque enhancement was achieved after the aerodynamic shape design optimization.  相似文献   

16.
This study numerically investigates the aerodynamic performance of Deformable trailing edge flaps (DTEFs) to reduce the fatigue and ultimate loads of wind turbine blades. A parametric design is adopted to ensure the flexible deformation of the DTEFs. Based on experimental data, a simulation of a baseline airfoil is performed with two methods: A fully coupled viscous/inviscid method employed by the XFOIL program and a Reynolds-averaged Navier–Stokes solver with a Transition SST (T-SST) turbulence model. The static and dynamic performances of DTEFs are then investigated under different flow conditions by using T-SST and maximizing its numerous advantages. Results indicate that under steady conditions, the effects of flap deflection on the integral forces and flow field structures of airfoils vary from attached flow conditions to separated conditions. The gaps between unsteady aerodynamic responses and static values are greater in attached flow and light stall conditions than in deep stall conditions. The ability of DTEFs to control the fatigue loads on wind turbine blades is verified. Specifically, DTEFs effectively alleviate the force fluctuations on blades under gust-induced swinging when wind speed measurements are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号