首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
Machining is a material removal process that alters the dynamic properties during machining operations. The peripheral milling of a thin-walled structure generates vibration of the workpiece and this influences the quality of the machined surface. A reduction of tool life and spindle life can also be experienced when machining is subjected to vibration. In this paper, the linearized stability lobes theory allows us to determine critical and optimal cutting conditions for which vibration is not apparent in the milling of thin-walled workpieces. The evolution of the mechanical parameters of the cutting tool, machine tool and workpiece during the milling operation are not taken into account. The critical and optimal cutting conditions depend on dynamic properties of the workpiece. It is illustrated how the stability lobes theory is used to evaluate the variation of the dynamic properties of the thin-walled workpiece. We use both modal measurement and finite element method to establish a 3D representation of stability lobes. The 3D representation allows us to identify spindle speed values at which the variation of spindle speed is initiated to improve the surface finish of the workpiece.  相似文献   

2.
Vibratory problems occurring during peripheral milling of thin-walled structures affect the quality of the finished part and, to a lesser extent, the tool life and the spindle life. Therefore, it is necessary to be able to limit these problems with a suitable choice of cutting conditions. The stability lobes theory makes it possible to choose the appropriate cutting conditions according to the dynamical behaviour of the tool or the part. We introduce the dynamical behaviour variation of the part with respect to the tool position in order to determine optimal cutting conditions during the machining process. This generalization of the classical lobes diagram leads us to a 3D lobes diagram construction. These computed results are compared with real experiments of down-milling of thin-walled structures.  相似文献   

3.
三维有限元分析在高速铣削温度研究中应用   总被引:8,自引:0,他引:8  
高速切削过程中切削温度对刀具磨损、工件加工表面完整性及加工精度有极大的影响。应用有限元法对高速铣削铝合金薄壁件过程中工件与刀具接触面温度、工件内部的温度分布进行了仿真研究,仿真过程中考虑了切削速度、进给量对切削温度的影响。通过红外热像仪对不同主轴转速下工件表面温度的测量,验证了仿真结果与试验结果比较接近。得出在高速切削铝合金过程中,随着切削速度的增加,刀具与工件接触区的温度变化存在二次效应。该结论对铝合金薄壁件加工具有重要的实用价值。  相似文献   

4.
Pocket milling is the most known machining operation in the domains of aerospace, die, and mold manufacturing. In the present work, GA-OptMill, a genetic algorithm (GA)-based optimization system for the minimization of pocket milling time, is developed. A wide range of cutting conditions, spindle speed, feed rate, and axial and radial depth of cut, are processed and optimized while respecting the important constraints during high-speed milling. Operational constraints of the machine tool system, such as spindle speed and feed limits, available spindle power and torque, acceptable limits of bending stress and deflection of the cutting tool, and clamping load limits of the workpiece system, are respected. Chatter vibration limits due to the dynamic interaction between cutting tool and workpiece are also embedded in the developed GA-OptMill system. Enhanced capabilities of the system in terms of encoded GA design variables and operators, targeted cutting conditions, and constraints are demonstrated for different pocket sizes. The automatically identified optimal cutting conditions are also verified experimentally. The developed optimization system is very appealing for industrial implementation to automate the selection of optimal cutting conditions to achieve high productivity.  相似文献   

5.
In aerospace industry, thin-walled workpiece milling is a critical task. Also, the machining vibration is a major issue for the accuracy of the final part. In this study, a new dynamic analytical model is proposed to determine the effect of damping factor on the dynamic response of thin-walled workpiece in machining. A complex structure workpiece is equivalent to a thin plate. The fixture constrains and the damping factor are crucial elements of this thin plate. Therefore, the magnetorheological fluid flexible fixture is designed to suppress the machining vibration in machining process. Then, the general dynamic cutting force model and the damping force model are proposed for the key dynamic equation for the prediction of dynamic response to evaluate the stability of the milling process with and without the damping control. Finally, the feasibility and effectiveness of the proposed model is validated by machining tests. The predicted values match on the experiment results.  相似文献   

6.
针对数控重型切削加工过程的切削稳定性具有不确定性的特点,提出了在切削稳定性和机床工作能力的约束下,获得最大材料去除率的工艺参数优化方法。根据重型切削加工的工艺特点建立三维动力学模型,以机床的固有频率、阻尼比、刚度和切削力系数作为不确定因素,结合排零定理和边理论对其进行不确定性分析,获得稳健的切削稳定性叶瓣图,结合切削深度、刀具直径和刀具齿数的关系,为加工过程选择能获得最大切削深度的刀具。在此基础上,建立工艺参数优化模型,选择最佳的轴向切削深度、径向切削深度和主轴转速的组合,最后以一台加工中心上某型号发动机缸体表面的粗加工过程为例进行了验证。  相似文献   

7.
A method for predicting simultaneous dynamic stability limit of thin-walled workpiece high-speed milling process is described. The proposed approach takes into account the variations of dynamic characteristics of workpiece with the tool position. A dedicated thin-walled workpiece representative of a typical industrial application is designed and modeled by finite element method. The curvilinear equation of modal characteristics changing with tool position is regressed. A specific dynamic stability lobe diagram is then elaborated by scanning the dynamic properties of workpiece along the machined direction throughout the machining process. The results show that, during thin-walled workpiece milling process, material removing plays an important part on the change of dynamic characteristics of system, and the stability limit curves are dynamic curves with time?Cvariable. In practical machining, some suggestion is interpreted in order to avoid the vibrations and increase the chatter free material removal rate and surface finish. Then investigations are compared and verified by high-speed milling experiments with thin-walled workpiece.  相似文献   

8.
High-speed milling of thin-walled part is a widely used application for aerospace industry. The low rigidity components, large quantities of material removed in machining progress, are in the risk of the instability of the progress. In this paper, the thin-walled parts have the similar characteristics with the tools. Therefore, the dynamic model and the stability critical condition determined by the relative dynamic behavior between tool subsystem and workpiece subsystem are put forward. The thin-walled parts’ dynamic character varies greatly with time when machining. The whole workpiece has been divided into several stages by finite element analysis (FEA) so that its various modal parameters in the milling progress can be obtained gradually; thus, the variation due to metal removal has been accurately taken into account. The stability critical condition is predicted by frequency domain method based on the dynamic behavior of the two subsystems. With the respect to time-varying critical stability condition, a three-dimensional lobe diagram has been developed to show the changing conditions of chatter. Finally, the proposed methods and models were proven by series milling experiments.  相似文献   

9.
High-speed machining of thin-walled workpiece is widely used in aerospace industry. To optimize the machining parameters in milling operations, the related process stability is required to be predicted. Compared to the existing two-dimensional (2D) milling stability model, a more completed three-dimensional (3D) regenerative process stability prediction model of thin-walled workpiece is presented based on the newly developed dynamic model. The efficiency and accuracy of the regenerative milling stability can be improved in the presented 3D model. The analysis procedure of the stability of flexible dynamic milling is developed in details. The 3D stability lobes are calculated according to the full discretization method and direct integration scheme. To verify the accuracy of presented 3D stability model, the thin-walled workpiece milling sound pressure signal and surface quality are determined in experiments.  相似文献   

10.
提出一种薄壁件变参数铣削系统动态特性分析方法。考虑铣削过程中的自激振动和强迫振动,建立了薄壁件变参数(模态质量、模态阻尼和模态刚度)铣削系统周期延迟微分方程,借助有限单元法和最小二乘法,获得加工过程中工件系统固有频率和模态质量随刀具位置的连续变化曲线。研究结果显示,薄壁件加工过程中,材料切除对系统动态特性有重要影响。实际加工时,应采取相应措施避免剧烈振动的发生。  相似文献   

11.
薄壁结构零件在加工过程中极易发生变形和切削振动,这对提高加工质量和加工效率十分不利.在考虑刀具和工件两个方向自由度的基础上,分析了薄壁零件的动态铣削模型.针对2A12铝合金薄壁结构零件,利用MIKRON UCPDUR0800 高速加工中心和相关仪器、软件,通过铣削力辨识实验和模态实验,进行了高速铣削薄壁零件的稳定域分析和实验验证.  相似文献   

12.
Chatter usually occurs in cutting of thin-walled workpiece due to poor structural stiffness, which results in poor surface quality and damaged tool. Aiming at process damping caused by interference between a tool flank face and a machined surface of thin-walled part, the dynamic model and critical condition of stability are proposed by the relative transfer functions, when both the tool structure and the machined workpiece have similar dynamic behaviors in this paper. Using the frequency method to solve the stability of the cutting chatter, it can be seen that the process damping can significantly improve the stability of the low speed region. Moreover, the stability domain is different and more exact than the one that derives from the simple superposition of the tool and the workpiece lobe diagrams. The correctness of the model is validated by experiments. These conclusions provide a theoretical foundation and reference for the milling mechanism research.  相似文献   

13.
航空薄壁件圆角的铣削加工试验研究   总被引:7,自引:0,他引:7  
赵威  何宁  李亮  武凯 《工具技术》2005,39(3):16-19
航空薄壁件圆角加工的质量控制一直是不易解决的难题。在圆角的走刀过程中,常常发生欠切、过切、振动等现象,一般要通过手工打磨来消除过切、欠切痕迹或振纹。其不仅降低了刀具的寿命,严重影响了工件的加工精度和加工效率。本文提出了细化圆角走刀路径的铣削方法,以解决航空薄壁件的圆角铣削加工问题。试验结果表明,该方法是有效、可行的。  相似文献   

14.
工艺参数优化对提高切削过程的加工效率和加工成本具有重要意义。将铣削系统动力学作为主要约束条件,提出端面铣削工艺参数的多目标优化模型。基于铣削系统动力学分析,得到了综合切削稳定性、工件表面粗糙度、主轴转速、切削力、切削功率等约束的工艺参数多目标优化模型。通过调节权重系数实现优化方向的控制,并采用快速粒子群算法对工艺参数进行优化计算。工艺优化实例及试验表明,采用基于动力学约束的工艺参数优化方法可以获得较好的工艺参数优化结果。  相似文献   

15.
Chatter phenomenon often occurs during end milling of thin-walled plate and becomes a common limitation to achieve high productivity and part quality. For the purpose of chatter avoidance, the optimal selection of the axial and radial depth of cut, which are decisive primary parameters in the maximum material removal rate, is required. This paper studies the machining stability in milling of the thin-walled plate and develops a three-dimensional lobe diagram of the spindle speed, axial, and radial depth of cut. Through the three-dimensional lobe, it is possible to choose the appropriate cutting parameters according to the dynamic behavior of the chatter system. Moreover, this paper studies the maximum material removal rate at the condition of optimal pairs of the axial and radial depth of cutting.  相似文献   

16.
Stability lobe diagram can be used for selecting proper milling parameters to perform chatter-free operations and improve productivity during milling of thin-walled plates. This paper studies the machining stability in milling of thin-walled plates and develops a three-dimensional stability lobe diagram of the spindle speed, tool position, and axial depth of cut. The workpiece-holder system is modeled as a 2-degree-of-freedom system considering that the tool system is much more rigid than the thin-walled plate, and dynamic equations of motion described for the workpiece-holder system are solved numerically in time domain to compute the dynamic displacements of the thin-walled plate. Statistical variances of the dynamic displacements are then employed as a chatter detection criterion to acquire the stability lobe diagram. The experimentally obtained stability limits correspond well with the predicted stability limits. In addition, influence of feed rate on stability limits is also investigated. By performing frequency analysis of the measured cutting forces to judge if chatter occurs, it is found that feed per tooth has little influence on the stability limits. However, feed per tooth impacts the machined surface quality. The results show that the surface quality drops by increasing feed per tooth.  相似文献   

17.
Machining chatter often becomes a big hindrance to high productivity and surface quality in actual milling process, especially for the thin-walled workpiece made of titanium alloy due to poor structural stiffness. Aiming at this issue, the stability lobes are usually employed to predict if chatter may occur in advance. For obtaining the stability lobes in milling to avoid chatter, this article introduces an extended dynamic model of milling system considering regeneration, helix angle, and process damping into the high-order time domain algorithm which can guarantee both high computational efficiency and accuracy. Via stability lobes, the reasonability and accuracy of the proposed method are verified globally utilizing specific examples in literature. More convincingly, the time-domain numerical simulation is also implemented to predict vibration displacement for partial stability verification. In this extended model, process damping is well-known as an effective approach to improve the stability at low spindle speeds, and particularly, titanium alloy as typical difficult-to-machine material is generally machined at low spindle speeds as well due to its poor machinability. Therefore, the proposed method can be employed to obtain the 3D stability lobes in finish milling of the thin-walled workpiece made of titanium alloy, Ti-6Al-4V. Verification experiments are also conducted and the results show a close agreement between the stability lobes and experiments.  相似文献   

18.
颤振是金属切削加工过程中由于刀具和工件之间相互作用所产生的一种强烈的自激振动现象,会导致切削力幅值增加且发生剧烈波动,进而降低工件表面质量和刀具使用寿命。针对此问题,基于铣削过程稳定性预测分析方法建立多硬度拼接工件的动态铣削系统,对多硬度拼接模具铣削过程稳定性进行深入研究,实现了对拼接模具铣削加工过程颤振稳定域的仿真,进而研究了模态参数对稳定性叶瓣图形状的影响。最后通过时域分析、表面形貌和刀具磨损的研究,综合验证了稳定性预测曲线的精度。研究结果为多硬度拼接模具铣削加工提供理论基础,并设置合理的加工参数来实现金属最大切除率,为大型汽车覆盖件模具铣削加工提供理论依据及技术指导。  相似文献   

19.
The induction-heated tool and cryogenically cooled workpiece are investigated for end milling of elastomers to generate desirable shape and surface roughness. Elastomer end milling experiments are conducted to study effects of the cutting speed, tool heating, and workpiece cooling on the chip formation, cutting forces, groove width, and surface roughness. At high cutting speed, smoke is generated and becomes an environmental hazard. At low cutting speeds, induction heated tool, if properly utilized, has demonstrated to be beneficial for the precision machining of elastomer with better surface roughness and dimensional control. Frequency analysis of cutting forces shows that the soft elastomer workpiece has low frequency vibration, which can be correlated to the surface machining marks. The width of end-milled grooves is only 68 to 78% of the tool diameter. The correlation between the machined groove width and cutting force reveals the importance of the workpiece compliance to precision machining of elastomer. This study also explores the use of both contact profilometer and non-contact confocal microscope to measure the roughness of machined elastomer surfaces. The comparison of measurement results shows the advantages and limitations of both measurement methods.  相似文献   

20.
Aluminum alloy is the main structural material of aircraft,launch vehicle,spaceship,and space station and is pro-cessed by milling.However,tool wear and vibration are the bottlenecks in the milling process of aviation aluminum alloy.The machining accuracy and surface quality of aluminum alloy milling depend on the cutting parameters,material mechanical properties,machine tools,and other parameters.In particular,milling force is the crucial factor to determine material removal and workpiece surface integrity.However,establishing the prediction model of milling force is important and difficult because milling force is the result of multiparameter coupling of process system.The research progress of cutting force model is reviewed from three modeling methods:empirical model,finite element simulation,and instantaneous milling force model.The problems of cutting force modeling are also determined.In view of these problems,the future work direction is proposed in the following four aspects:(1)high-speed milling is adopted for the thin-walled structure of large aviation with large cutting depth,which easily produces high residual stress.The residual stress should be analyzed under this particular condition.(2)Multiple factors(e.g.,eccentric swing milling parameters,lubrication conditions,tools,tool and workpiece deformation,and size effect)should be consid-ered comprehensively when modeling instantaneous milling forces,especially for micro milling and complex surface machining.(3)The database of milling force model,including the corresponding workpiece materials,working condi-tion,cutting tools(geometric figures and coatings),and other parameters,should be established.(4)The effect of chatter on the prediction accuracy of milling force cannot be ignored in thin-walled workpiece milling.(5)The cutting force of aviation aluminum alloy milling under the condition of minimum quantity lubrication(mql)and nanofluid mql should be predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号