首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
We explore the wide‐field optical nanoimaging capabilities of the surface plasmon polariton (SPP) tomography technique. We show that nanofeatures with lateral dimensions smaller than λ/20 can be observed in the surface emission (SE) images of plasmonic crystals with a period of 300 nm. Moreover, as a proof‐of‐concept, we demonstrate that SPP tomography permits to resolve two single objects with a center‐to‐center separation of 200 nm and edge‐to‐edge separation as small as λ/7. We present a comprehensive discussion about the nanoimaging capabilities of the SPP tomography technique. In contrast to other optical subwavelength resolution techniques, in our approach for imaging nanosize features, enhanced evanescent waves are coupled to the far‐field via leakage radiation associated with SPPs excited by near‐field fluorescence; therefore wide‐field images, which are not out‐of‐plane diffraction‐limited, are formed directly in the microscope's camera. We also discuss additional imaging processing capabilities associated with the fact that SPP tomography SE images are formed by the microscope lenses through an analog tomography process. SCANNING 35: 246‐252, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Einspahr JJ  Voyles PM 《Ultramicroscopy》2006,106(11-12):1041-1052
Confocal STEM is a new electron microscopy imaging mode. In a microscope with spherical aberration-corrected electron optics, it can produce three-dimensional (3D) images by optical sectioning. We have adapted the linear imaging theory of light confocal microscopy to confocal STEM and use it to suggest optimum imaging conditions for a confocal STEM limited by fifth-order spherical aberration. We predict that current or near-future microscopes will be able to produce 3D images with 1 nm vertical resolution and sub-Angstrom lateral resolution. Multislice simulations show that we will need to be cautious in interpreting these images, however, as they can be complicated by dynamical electron scattering.  相似文献   

3.
The optimal lens parameters for incoherent imaging using third and fifth-order aberration-corrected electron microscopes are derived analytically. We propose simple models for the point spread function (PSF) and transfer function that give analytic formulae for the lateral resolution and depth resolution. We also derive an analytic formula for the contrast transfer function (CTF) in three dimensions and show that depth sectioning has an information limit equivalent to tomography with a missing cone of 90 degrees minus the aperture angle.  相似文献   

4.
E. F. Aust  M. Sawodny  S. Ito  W. Knoll 《Scanning》1994,16(3):353-362
This article summarizes some recent developments in the field of surface plasmon and guided optical wave microscopies. It is shown that these imaging techniques based on evanescent light allow for a quantitative optical characterization of ultrathin films with a thickness sensitivity of a few Ångstroms and a lateral resolution of μm.  相似文献   

5.
E. F. Aust  M. Sawodny  S. Ito  W. Knoll 《Scanning》1994,16(6):353-361
This article summarizes some recent developments in the field of surface plasmon and guided optical wave microscopies. It is shown that these imaging techniques based on evanescent light allow for a quantitative optical characterization of ultrathin films with a thickness sensitivity of a few Ångstroms and a lateral resolution of μm.  相似文献   

6.
Confocal microscopes provide clear, thin optical sections with little disturbance from regions of the specimen that are not in focus. In addition, they appear to provide somewhat greater lateral and axial image resolution than with non-confocal microscope optics. To address the question of resolution and contrast transfer of light microscopes, a new test slide that enables the direct measurement of the contrast transfer characteristics (CTC) of microscope optics at the highest numerical aperature has been developed. With this new test slide, the performance of a confocal scanning laser microscope operating in the confocal reflection mode and the non-confocal transmission mode was examined. The CTC curves show that the confocal instrument maintains exceptionally high contrast (up to twice that with non-confocal optics) as the dimension of the object approaches the diffraction limit of resolution; at these dimensions, image detail is lost with non-confocal microscopes owing to a progressive loss of image contrast. Furthermore, we have calculated theoretical CTC curves by modelling the confocal and non-confocal imaging modes using discrete Fourier analysis. The close agreement between the theoretical and experimental CTC curves supports the earlier prediction that the coherent confocal and the incoherent non-confocal imaging mode have the same limit of resolution (defined here as the inverse of the spatial frequency at which the contrast transfer converges to zero). The apparently greater image resolution of the coherent confocal optics is a consequence of the improved contrast transfer at spacings which are close to the resolution limit.  相似文献   

7.
This paper describes the application of a Köhler illuminated high‐resolution wide‐field microscope using surface plasmons to provide the image contrast. The response of the microscope to a grating structure in both the Fourier and the image planes is presented to demonstrate image formation by surface waves. The effect of spatial filtering in the back focal (Fourier) plane to enhance image constrast is described. We also discuss how the surface wave contrast mechanism affects the imaging performance of the microscope and discuss factors that can be expected to lead to even greater improvements in lateral resolution and sensitivity.  相似文献   

8.
For applications in micro- and nanotechnologies the lateral resolution of optical 3-D microscopes becomes an issue of increasing relevance. However, lateral resolution of 3-D microscopes is hard to define in a satisfying way. Therefore, we first study the measurement capabilities of a highly resolving white-light interference (WLI) microscope close to the limit of lateral resolution. Results of measurements and simulations demonstrate that better lateral resolution seems to be achievable based on the envelope evaluation of a WLI signal. Unfortunately, close to the lateral resolution limit errors in the measured amplitude of micro-structures appear. On the other hand, results of interferometric phase evaluation seem to be strongly low-pass filtered in this case.

Furthermore, the instrument transfer characteristics and the lateral resolution capabilities of WLI instruments are also affected by polarization. TM polarized light is less sensitive to edge diffraction and thus systematic errors can be avoided. However, apart from ghost steps due to fringe order errors, the results of phase evaluation seem to be closer to the real surface topography if TE polarized light is used. The lateral resolution can be further improved by combining WLI and structured illumination microscopy. Since the measured height of rectangular profiles close to the lateral resolution limit is generally too small compared to the real height, we introduce a method based on phase evaluation which characterizes the heights of barely laterally resolved rectangular gratings correctly.  相似文献   

9.
A theory for multiphoton fluorescence imaging in high aperture scanning optical microscopes employing finite sized detectors is presented. The effect of polarisation of the fluorescent emission on the imaging properties of such microscopes is investigated. The lateral and axial resolutions are calculated for one-, two- and three-photon excitation of p-quaterphenyl for high and low aperture optical systems. Significant improvement in lateral resolution is found to be achieved by employing a confocal pinhole. This improvement increases with the order of the multiphoton process. Simultaneously, it is found that, when the size of the pinhole is reduced to achieve the best possible resolution, the signal-to-noise ratio is not degraded by more than 30%. The degree of optical sectioning achieved is found to improve dramatically with the use of confocal detection. For two- and three-photon excitation axial full width half-maximum improvement of 30% is predicted.  相似文献   

10.
Scanning probe microscopes derived from the scanning tunnelling microscope (STM) offer new ways to examine surfaces of biological samples and technologically important materials. The surfaces of conductive and semiconductive samples can readily be imaged with the STM. Unfortunately, most surfaces are not conductive. Three alternative approaches were used in our laboratory to image such surfaces. 1. Crystals of an amino acid were imaged with the atomic force microscope (AFM) to molecular resolution with a force of order 10?8 N. However, it appears that for most biological systems to be imaged, the atomic force microscope should be able to operate at forces at least one and perhaps several orders of magnitude smaller. The substitution of optical detection of the cantilever bending for the measurement by electron tunnelling improved the reliability of the instrument considerably. 2. Conductive replicas of non-conductive surfaces enabled the imaging of biological surfaces with an STM with a lateral resolution comparable to that of the transmission electron microscope. Unlike the transmission electron microscope, the STM also measures the heights of the features. 3. The scanning ion conductance microscope scans a micropipette with an opening diameter of 0·04-0·1 μm at constant ionic conductance over a surface covered with a conducting solution (e.g., the surface of plant leaves in saline solution).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号