首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In order to in-situ measurement of large volume water samples, using of a portable HPGe detector was considered. Because of necessity of efficiency calibration of the detector for the geometry (100 L), the large volume standard sources were prepared. Before making large volume standard sources (100 L), the Monte Carlo method has been applied in order to optimizing the calibration procedures and in agreement with experiment results, has been caused reducing the amount of produced radioactive wastes. First, the efficiency of the portable coaxial P-type HPGe detector for 1 L liquid standard sources in Marinelli beaker geometry was simulated. Then, the experimental efficiency calibration was carried out using the detector for those 1 L liquid standard sources in Marinelli beaker geometry. The detector dead layer was determined by comparison of the simulation and experimental efficiency curve results. Then, a relation between simulation and experimental measurements, that is, between pulse-height per emitted particle, F8 tally, and estimated amount of spiked radioactive solution into the 1 L distilled water in Marinelli beaker was found. Then, the efficiency calibration of the large volume liquid standard sources was simulated. The estimated amount of spiking radioactive solution into the large volume distilled water (100 L) has been taken into account dividing experimental efficiencies (in Marinelli beaker) by the simulated efficiencies (in 100 L). Finally, by spiking the large volume distilled water with the radioactive solution, efficiency calibration of the potable HPGe detector for 100 L geometry was done.  相似文献   

3.
Combination of different extraction methods is an interesting work in the field of sample pretreatment. In the current study, for the first time, solid phase extraction combined with solvent-based de-emulsification dispersive liquid–liquid microextraction (SPE-SD-DLLME) was developed for preconcentration and trace detection of cadmium in water samples using flame atomic absorption spectrophotometry (FAAS). The adsorbed cadmium ions on prepared SPE (75 mL of aqueous solution) were eluted by optimized elution solvent and introduced to the second microextraction step. The effective variables of SPE including the pH of sample, flow rates, type, concentration and volume of the eluent and the effect of potentially interfering ions of the separation of cadmium were evaluated and optimized. Also, several factors that influence the SD-DLLME step such as pH, neocuproine concentration (the cadmium binding ligand), type of dispersed/de-emulsifier solvent, volume of disperser/de-emulsifier solvent and type and volume of extraction solvents were investigated. SPE-SD-DLLME provides a preconcentration factor of 165 for cadmium ions. Calibration plot was linear in the range of 0.1–50 μg L−1 with correlation of determination (r2) of 0.988. The precision and limit of detection of proposed method were 5.1% (RSD%, n = 8) and 0.03 μg L−1, respectively.  相似文献   

4.
Unbaffled stirred tanks are extensively used in chemical process industries for variety of applications including semi-batch reactions. In un-baffled stirred tanks, impeller rotation generates a vortex and reactants are added into this vortex. There is a growing interest towards understanding the mixing performance of such unbaffled stirred vessels. The present work is aimed at providing experimental results on mixing time and solid particle distribution inside an unbaffled vessel using electrical resistance tomography (ERT). A methodology for using ERT for characterizing vortex and mixing in unbaffled stirred vessel was established. The ERT was used to measure the mixing time with and without solid particles (glass beads, 250 μm) in a stirred reactor. In this study, ERT technique was effectively applied for imaging solid–liquid flow and developed suitable data processing methodologies. It observed that estimated liquid phase mixing time for Un-baffled vessel was more as compared to baffled vessel. Radial solid concentration profiles showed Gaussian distribution inside the vessel. The presented methodology of using ERT and experimental results will be useful for designing and estimating mixing and solid distribution in unbaffled stirred tanks.  相似文献   

5.
Detection of gasoline level can be done in a safe and simple way using two output port multimode fiber coupler with a structure of 2 × 2 as a sensor. Two output ports (sensing port) are connected with two reflector displacement device (RDD) and functioned as two probes. These probes are placed on the wall of gasoline tank in a storied and work interchangeably or together depending on setting of these probes. Detection mechanism of the system is based on changes in intensity of reflected light from the reflector RDD that shifts due to changes in level of gasoline (hydrostatic pressure principle). Changes in intensity of light coming into the sensing port are then forwarded to the optical detector. Experiments performed by varying the location of the second probe as 45 cm, 50 cm, and 55 cm above the first probe to detect the level of gasoline in the process of filling and emptying the tank. Experimental results show the process of filling and emptying the tank have small differences of 6% with the dynamic range, the linear region, and resolution are 100 cm, 70 cm, and 0.4 cm respectively. Sensor sensitivity in filling and emptying process of the tank are 2.7 mV/cm and 2.8 mV/cm respectively. These results were the best performance of the sensor, which occurs when the level of the second probe was 55 cm above the first probe.  相似文献   

6.
Wire-mesh sensors (WMS), developed at HZDR [4], [13], are widely used to visualize two-phase flows and measure flow parameters, such as phase fraction distributions or gas phase velocities quantitatively and with a very high temporal resolution. They have been extensively applied to a wide range of two-phase gas–liquid flow problems with conducting and non-conducting liquids. However, for very low liquid loadings, the state of the art data analysis algorithms for WMS data suffer from the comparably low spatial resolution of measurements and from boundary effects, caused by e.g. flange rings – especially in the case of capacitance type WMS. In the recent past, diverse studies have been performed on two-phase liquid–gas stratified flow with low liquid loading conditions in horizontal pipes at the University of Tulsa. These tests cover oil–air flow in a 6-inch ID pipe and water–air flow in a 3-inch ID pipe employing dual WMS with 32×32 and 16×16 wires, respectively. For oil–air flow experiments, the superficial liquid and gas velocities vary between 9.2 m/s≤νSG≤15 m/s and 0.01 m/s≤νSL≤0.02 m/s, respectively [2]. In water–air experiments, the superficial liquid and gas velocities vary between 9.1 m/s≤νSG≤33.5 m/s and 0.03 m/s≤νSL≤0.2 m/s, respectively [17], [18]. In order to understand the stratified wavy structure of the flow, the reconstruction of the liquid–gas interface is essential. Due to the relatively low spatial resolution in the WMS measurements of approximately 5 mm, the liquid–gas interface recognition has always an unknown uncertainty level. In this work, a novel algorithm for refined liquid–gas interface reconstruction is introduced for flow conditions where entrainment is negligible.  相似文献   

7.
The multi-wavelength fiber sensor for measuring surface roughness and surface scattering characteristics were investigated. In this paper, specimens with different surface roughness were analyzed by using 650 nm, 1310 nm and 1550 nm laser as the light source, respectively. The working distance of 2 mm was chosen as the optimum measurement distance. The experimental results indicate that multi-wavelength fiber sensor can accurately measure surface roughness, and can effectively reduce the unsystematic error. The light scattering intensity ratio has a good linear relationship with the surface roughness. The minimum relative error of the surface roughness is 2.92%, the maximum relative error is 13.4%, and the average relative error is about 7.48%. The accuracy for measuring surface roughness by multi-wavelength fiber sensor is about twice as large as that by single-wavelength fiber sensor.  相似文献   

8.
Due to the many benefits such as excellent aesthetics, biocompatibility, and wear resistance, the use of light cured composite materials in dentistry has grown in the last few decades. However, the main disadvantage of present composite materials is significant volumetric shrinkage during curing, which leads to void and crack formation that is detrimental to the longevity of the restoration. This work presents a gas pycnometer which was re-designed to achieve high precision measurements of polymerization shrinkage while allowing in-situ curing of small size dental composites. Samples of dentin, enamel and body (DEB) shade of conventionally used restorative nanocomposite material with average mass of ∼141.35 mg were in-situ cured at irradiance of ∼370 mW/cm2 using various exposure time cycles, which totaled the manufacturer recommended 60 s. The proposed system enhancements allowed measurement of time-dependent polymerization shrinkage of in-situ light cured dental composites. Volumetric measurements had reproducibility of ∼0.005% of nominal full-scale sample cell chamber volume; and the shrinkage measurements did not exceed the average relative standard deviation (RSD) of ∼2.8%, which is ∼4 times better when compared with conventional techniques. Overall, this newly developed high precision and C-factor independent technique provides better understanding of time-dependent volumetric polymerization shrinkage aiding in development of better clinical procedures and materials to improve health and longevity of composite restorations.  相似文献   

9.
The new developed Optical Multimode Online Probe (OMOP) can process images from either incident-light illumination (also called epi-illumination) or transmitted-light illumination (also called trans-illumination). The probe has an outer diameter of 38 mm and the illumination is achieved by high performance Light Emitting Diodes (LEDs) with specifications of 1.96 mm² and 493 lm (251.53 lm/mm²) at an angular deviation of 0.37°. A camera probe is used with either an object-space telecentric (telecentricity <0.2°, 2437 mm virtual pupil distance) or entocentric objective (Köhler based illumination, 6238 mm virtual pupil distance). Using the telecentric mode, the particle distance independency is located within 20 mm while the focal depth is approximately 5 mm. The local resolution is between 20 and 30 μm, according to the used optics, with a standard deviation less than 4.5%. Maximum particle diameter is up to 5 mm while particles can reach up to 2 m/s as function of exposure. The basic distance transform approach with watershed segmentation for analysis of transmitted-light images gives deviations less than 5% at high particle densities and less than 2% at low ones. The error of false positives typically is below 5% while the error of wrong radiuses is below 1% for up to 90% of all droplets and below 5% otherwise. Up to five images per core and second (trans-illumination) can be analyzed automatically and online at densities up to 25% (trans-illumination, gap width less than 5 mm) 40% (object side telecentric epi-illumination, single probe) respectively.The advanced pre-segmentation approach based on the Random Forest Classifier (RFC) is used to perform the more complex image analysis with epi-illumination. As long as the quality of pre-segmentation is high enough, the classification results in images, which can be analyzed in the following distance transform approach. This is considerably depending on the quality of training the algorithm and recurring image features. Compared to the distance transform analysis at low densities the deviation increases. The RFC pre-segmented image gives an additional deviation of 1.1% (both in regard to the total amount of evaluated pixels) and a deviation of 12.9% in regard to the mean particle diameter. Below a particle size of 50 pixels the image analysis overestimates the actual number of particles due to the sensitivity of the Euclidian distance approach.  相似文献   

10.
The temperature dependence of the solid particle erosion of polydimethylsiloxane (PDMS) using aluminum oxide particles was investigated between the temperatures of ?178 and 17 °C for a variety of angles of attack using a novel cryogenic abrasive jet machining apparatus. It was found that the most efficient machining of PDMS (volume removed per kinetic energy of erodent) occurred at approximately ?178 °C, at angles of attack between 30° and 60° from the surface. A previously developed surface evolution model was used to predict the size and shape of unmasked channels at various temperatures. A good agreement between the predicted and measured channel profiles was obtained when the average blasting temperature was between approximately ?127 and ?178 °C. At ?82 °C, the fit was poorer, probably because of an increase in particle embedding. Although it was demonstrated that PDMS could be machined at temperatures above its glass transition, the erosion rate increased by a factor of more than 10 when the machining temperature was below this point.  相似文献   

11.
An in-situ acoustic emission (AE) monitoring technique has been implemented in a submerged jet impingement (SIJ) system in an effort to investigate the effect of sand particle impact on the degradation mechanism of X65 carbon steel pipeline material in erosion conditions.A detailed analysis of the acoustic events' count rate enabled the number of impacts per second to be quantified for a range of flow velocities (7, 10, 15 m/s) and solid loadings (0, 50, 200, 500 mg/L) in a nitrogen-saturated solution at 50 °C. The number of impacts obtained from acoustic signals showed a strong agreement with theoretical prediction for flow velocities 7 and 10 m/s. A deviation between practical readings and theory is observed for flow velocity of 15 m/s which may be due to error from detected emissions of multiple rebounded particles.Computational fluid dynamics (CFD) was used in conjunction with particle tracking to model the impingement system and predict the velocity and impact angle distribution on the surface of the sample. Data was used to predict the kinetic energy of the impacts and was correlated with the measured AE energy and material loss from gravimetric analysis. The results demonstrate that AE is a useful technique for quantifying and predicting the erosion damage of X65 pipeline material in an erosion–corrosion environment.  相似文献   

12.
Two miniaturized liquid film sensors (MLFS) based on electrical conductance measurement have been developed and tested. The sensors are non-intrusive and produced with materials and technologies fully compatible and integrable with standard microfluidics. They consist of a line of 20 electrodes with a purpose-designed shape, flush against the wall, covering a total length of 5.00 and 6.68 mm. The governing electronics achieve 10 kHz of time resolution. The electrode spacing of the two sensors is 230 μm and 330 μm, which allows measurements of liquid films up to 150 μm and 400 μm for sensors MLFSA and MLFSB, respectively. The sensor characteristics were obtained by imposing static liquid films of known thickness on top of the actual sensor. Further dynamic measurements of concurrent air-water flow in a horizontal microchannel were performed. The line of electrodes is placed across the flow direction with an angle of 3.53° from the direction of flow, allowing for a spatial resolution perpendicular to the flow of 14.2 μm for sensor MLFSA and 20.5 μm for sensor MLFSB. The high time and spatial resolution allows for fast and accurate detection of the presence of bubbles, and even measurement of film thickness and bubble velocity. Further information, such as the bubble shape, can be gathered based on the shape of the liquid layer underneath the bubble, which is particularly important for heat transfer studies in microchannels.  相似文献   

13.
The objective of this study was to develop a reliable method for the determination of the thermal conductivity of composted material using the TP08 probe. Study was set out to determine whether the selection of a signal fragment used to establish thermal conductivity (λ), has a significant influence on the results. Also minimum number of measurements was determined for every phase of the composting process. No significant differences were reported between results, but certain changes in the value of λ were noted. In successive stages of the process, thermal conductivity of composted material were: 0.31 ± 0.09, 0.45 ± 0.14, 0.27 ± 0.03 and 0.37 ± 0.17 W m−1 K−1.  相似文献   

14.
《Wear》2004,256(7-8):774-786
The present work reports the effect of carbide volume fraction on erosive wear behaviour of hardfacing cast irons. Five different grades of weld hardfacing cast irons were selected for the present investigation. The solid particle erosion experiments were carried out with blast furnace sinter, silica sand and alumina particles under mild (53–75 μm, 25 m s−1), moderately severe (125–150 μm/100–150 μm, 50 m s−1) and under severe erosion conditions (300–425 μm, 90 m s−1) at impingement angles of 30 and 90°. The variation in erosion rate with carbide volume fraction was observed to be strong function of the erodent particle hardness, impingement angle and the impact velocity. Under mild erosion conditions, erosion rate decreased with increasing carbide volume fraction (CVF), whereas erosion rate increased with CVF under moderately severe erosion condition with alumina particles. With silica sand particles under moderately severe erosion conditions the beneficial effect of large volume fraction of carbides could only be observed at 30°, whereas at normal impact erosion rate increased with increasing CVF. The erosion rate showed power law relationship with ratio of hardness of erodent particle to that of the target material (He/Ht) and expressed as E=c(He/Ht)p.With increasing severity of erosion conditions erosion rate showed stronger dependence on He/Ht as compared to those under mild and moderately severe erosion conditions. The mechanism of materials removal from the carbides involved Hertzian fracture with softer sinter particles, whereas harder alumina particles could plastically indent and cause gross fracture of the carbides.  相似文献   

15.
Nanocomposite polymer electrolyte (NCPE) was prepared using solution cast technique. Rice starch (RS), lithium iodide (LiI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid and TiO2 nanopowder (RS:LiI:MPII:TiO2) were introduced to prepare the sample. The conductivity of 3.63 × 10−4 S/cm was achieved by introducing 30 wt.% of 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid and 2 wt.% of TiO2. Temperature-dependent conductivity and dielectric behavior were analyzed in this work. Dye sensitized solar cell was fabricated using the nanocomposite film for this sample and analyzed.  相似文献   

16.
1 kg single-crystal silicon spheres are presently used as primary density standards in many countries. The absolute density of the spheres is determined from the measurements of their mass and volume in conformity with the definitions of the SI base units. Since the mass of the spheres is almost 1 kg, a mass comparison with the prototype of the kilogram can be performed with very low uncertainty. Absolute volume measurements for the spheres therefore have a crucial role in realizing a reliable density traceability system. To confirm the reliability of the volume measurement, the volume of a silicon sphere was measured independently using optical interferometers at the Korea Research Institute of Standards and Science (KRISS, Korea) and the National Metrology Institute of Japan (NMIJ, Japan). An optical interferometer with an etalon scanning system was used at KRISS. On the other hand, an optical interferometer with an optical frequency scanning system was used at NMIJ. The volume was measured at 20 °C and 0 Pa, and the results are in agreement with each other within their uncertainties. Details of the two interferometers and the comparison results are described.  相似文献   

17.
The frictional response of a multi-component phenolic-based friction material is highly complex under a set of variable loads and speeds. The present paper discusses the sensitivity of friction coefficient (μ) of friction composites containing synthetic graphite with different particle sizes (with similar crystallinity range) to braking pressure and sliding speed. The friction studies were carried out on a sub scale brake-test-rig, following 4 loads × 3 speeds experimental design. The best combination of performance properties was observed for the composite containing synthetic graphite with an average particle size of 410 μm. Other particle sizes which resulted in good performance were 38 and 169 μm. Very fine particle sizes were not beneficial for desired combination of performance properties. Regression analysis of μ following an orthogonal L9(3 × 3) experimental design method revealed that the first order influences of sliding speed and braking pressure were significant. When all the combinatorial influences of braking pressure and sliding speed are taken into account together their simultaneous effects would be most effective in the range of graphite particle size ~80–250 μm.  相似文献   

18.
This paper describes the design and validation of an upgraded grinding wheel scanner system that controls the position of a Nanovea CHR-150 Axial Chromatism sensor along the x- and y-directions of the wheel surface to measure and characterize wheel surface topography. The scanner features a novel homing system that enables the wheel to be removed from the scanner, used on a grinding machine and then re-mounted and re-homed so that the same location on the wheel surface can be repeatedly measured and monitored. The average standard deviation for homing was 27.6 μm and 19.3 μm in the x- and y-directions, respectively, which is more than adequate for typical area scans of 25 mm2. After homing, the scanner was able to repeatedly measure features that were similar in size to an abrasive grain (∼200 μm diameter) with an average error of 9.3 μm and 5.9 μm in the x- and y-directions, respectively. The resulting topography measurements were compared with Scanning Electron Microscope images to demonstrate the accuracy of the scanner. A custom particle filter was developed to process the resulting data and a novel analysis technique involving the rate of change of measured area was proposed as a method for establishing the reference wheel surface from which desired wheel topography results can be reported such as the number of cutting edges, cutting edge width and cutting edge area as a function of radial depth.  相似文献   

19.
A method is established to reliably determine surface conductance of single-layer or multi-layer atomically thin nano-carbon graphene structures. The measurements are made in an air filled standard R100 rectangular waveguide configuration at one of the resonant frequency modes, typically at TE103 mode of 7.4543 GHz. Surface conductance measurement involves monitoring a change in the quality factor of the cavity as the specimen is progressively inserted into the cavity in quantitative correlation with the specimen surface area. The specimen consists of a nano-carbon-layer supported on a low loss dielectric substrate. The thickness of the conducting nano-carbon layer does not need to be explicitly known, but it is assumed that the lateral dimension is uniform over the specimen area. The non-contact surface conductance measurements are illustrated for a typical graphene grown by chemical vapor deposition process, and for a high quality monolayer epitaxial graphene grown on silicon carbide wafers for which we performed non-gated quantum Hall resistance measurements. The sequence of quantized transverse Hall resistance at the Landau filling factors ν = ±6 and ±2, and the absence of the Hall plateau at ν = 4 indicate that the epitaxially grown graphene is a high quality mono-layer. The resonant microwave cavity measurement is sensitive to the surface and bulk conductivity, and since no additional processing is required, it preserves the integrity of the conductive graphene layer. It allows characterization with high speed, precision and efficiency, compared to transport measurements where sample contacts must be defined and applied in multiple processing steps.  相似文献   

20.
A highly integrated, Field Programmable Gate Array (FPGA) based induction measurement system for conductive flow level measurement is presented. Exploiting under-sampling and digital I/Q demodulation techniques, the system use direct digital sampling and can operate at multiple frequencies (from 100 kHz to over 10 MHz). Details are discussed in both hardware and software aspects. Simulations and experiments at 2.6 MHz and 8.3 MHz are carried out using saline solutions with conductivities of 1.8 S/m and 4.3 S/m to verify the performance of the system. Application of the system for saline level monitoring is implemented and studied, which further proves the applicability of the system in low conductivity object measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号