首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对汽车在有无ABS情况下制动能否保证良好的稳定和制动性的问题,对汽车整个ABS系统模型进行了仿真研究。对单轮车辆模型进行了动力学分析,得出了其车辆动力学数学公式,然后利用Simulink搭建了单轮车辆模型的数学仿真模型;依次分析了基于魔术公式的汽车轮胎模型、制动系统模型、滑移率模型以及PID控制模型的数学公式,搭建了相关仿真模型;最后将各个模块组合成了一个完整的汽车ABS仿真模型,并对有无ABS下的汽车制动工况进行了对比。研究结果表明:所建立的ABS系统模型可靠,在制动过程中具有良好的稳定和制动性。  相似文献   

2.
本文对某汽车ABS制动系统进行仿真建模,并对其进行单轮模型和分段线性的轮胎模型的建立;在Matlab环境下对ABS控制器进行设计和仿真分析;提出了一种门限值控制算法,对制动液压控制系统实现增压、保压、减压动作,使得汽车制动时的滑移率控制在一定范围内,以保证汽车的平稳制动。得出ABS控制下的滑移率时域结果图、车轮前进速度与车轮线速度关系曲线、制动器制动力矩与地面制动力随时间变化曲线。仿真结果表明:在门限值控制算法下设计的ABS控制器能够将滑移率有效地控制在理想范围内,车轮前进速度近似一条直线,加速度趋于定值,且防止了车轮过早抱死,说明在此基础上设计的控制器能够使得汽车平稳制动。  相似文献   

3.
为研究和评价ABS性能,以单轮车辆模型为基础,建立了单轮车辆动力学模型、轮胎模型及滑移率与附着系数的数学模型。在此基础上,提出了一种采用分数指数趋近律的汽车防抱死制动系统滑模变结构控制策略。这里主要采用含积分的滑模函数来设计切换函数,并结合分数阶指数微分方程、F-函数定义与性质,设计了分数阶指数趋近律。然后以实现高精度的滑模控制为目标,推导得到控制器总的等效控制输出。同时,在Matlab/Simulink中进行系统建模和仿真实验。结果表明:相比整数阶的汽车防抱死滑模控制系统滑移率能够更快、更准的跟踪达到期望值,制动时间和制动距离明显降低。  相似文献   

4.
铁道车辆防滑控制仿真   总被引:5,自引:0,他引:5  
列车的可靠制动是其安全运行的必要保证,而制动过程中的防滑控制又是安全制动和缩短制动距离的有效途径.建立车辆制动动力学模型和单轮对制动动力学模型,车辆系统自由度为42,建模中考虑车辆系统悬架力非线性、轮轨接触几何关系非线性和轮轨蠕滑力非线性.考虑到盘型制动系统的摩擦特性和制动缸压力变化特性,建立了制动系统力学模型.采用P控制方法,用数值仿真方法研究准高速列车制动过程的防滑控制.计算结果表明,P控制能有效防止车轮在轮轨粘着力较低时的滑行,从而提高制动的可靠性和缩短制动距离,并减小制动过程中车辆的纵向振动.  相似文献   

5.
防抱制动系统(ABS)是汽车上的重要安全装置,车轮角减速度和滑移率是ABS的主要控制变量,由于悬架与车身之间存在相对运动,在不平路面行驶或制动时会导致车轮角加速度和滑移率受到干扰。利用ADAMS软件对车辆虚拟样机进行了动力学仿真分析,研究了悬架纵向刚度、纵向阻尼等参数对车轮角加速度和滑移率的影响,为车辆设计提供了依据。  相似文献   

6.
汽车上安装的ABS关系到汽车行驶制动过程中的稳定性和驾驶员的安全,所以对于ABS的研究至关重要。根据某车型建立了单轮系统模型和轮胎附着系数模型,第一,应用MATLAB在制动减压、增压和保压过程中进行:滑移率、车轮中心速度、线速度、地面制动力和制动力矩等参数的变化过程仿真;第二,仿真出不同质心位置对防抱制动系统的影响。由仿真图像可以清晰的看出每一个参数的变化过程,便于对今后ABS的改进有更好的理论依据,并且可知,当质心的位置由后向前变大时,可以使制动时间缩短,确保行车的安全。  相似文献   

7.
应用ADAMSNIEW建立了自动引导车的不等长双横臂式独立前悬架仿真模型,采用单轮激振方式对模型的动力学特性进行仿真分析.主要分析了在车轮上下跳动过程中车轮定位参数的变化趋势,车轮各定位参数对侧向滑移量的影响,这些研究为车轮定位参数的初始设计提供了技术依据.并应用ADAMS软件对此模型进行优化设计,优化的最终目标是获得车轮跳动过程中车轮的最小侧滑量,以便改善悬架系统性能和减小轮胎磨损,提高自动引导车的安全性、转向轻便性、操纵稳定性及燃油经济性.  相似文献   

8.
为解决电动汽车电机制动时出现抱死的问题,对全桥调制与半桥调制下永磁无刷直流电机制动转矩进行比较,发现全桥调制下电机制动能量回收具有明显优势;分析了全桥调制下电机制动实现防抱死控制基本原理,利用PID控制设计了基于滑移率控制的电动汽车电机制动ABS控制系统。根据全桥调制下电机制动电气模型,在车辆单轮制动动力学模型基础上,建立了基于Matlab/Simulink的电动汽车电机制动模型。在高、中、低3种附着系数路况以及对接情况下进行仿真,仿真结果表明:系统反应迅速,控制精确;通过PID控制器控制,滑移率保持在理想值,系统稳定性强,能够较好地实现ABS功能。  相似文献   

9.
为了提高汽车的制动效能和行驶安全性,针对目前常用的汽车ABS控制方法,在没有考虑道路状况变化对汽车滑移率及减速度等参量变化的影响而容易引起汽车侧滑、甩尾等不良状况,提出了基于路面识别的汽车ABS滑模控制方法,该方法根据制动过程中的汽车滑移率及减速度来进行路面识别,动态地获取汽车最佳滑移率,并以此对汽车ABS进行滑模控制;然后以单轮整车制动模型为对象,利用MATLAB/Simulink软件对该控制方法进行计算机仿真实验分析;结果表明,与常用的汽车ABS逻辑门限值及无路面识别的滑模控制方法相比,该方法可以使汽车制动时间减少5%~12%,从而使汽车制动效能和行驶安全性得以提高。  相似文献   

10.
针对电动汽车电液制动防抱死问题,设计了协调控制系统。首先建立了液压ABS与电机ABS的数学模型,然后根据路面附着系数高低的划分,提出兼顾能量回收的电液制动力协调控制策略,并且在车辆单轮动力学模型的基础上,采用PID控制方法,以理想滑移率为控制目标,分别设计了电机ABS系统和液压ABS系统。在Matlab/Simulink环境下建立仿真模型,对高、低附着系数路面及对接路面的情况进行仿真分析,仿真结果表明:控制策略能够满足控制滑移率的需求,有利于能量回收;系统反应迅速、控制精度高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号