首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
采用双离子束溅射物理沉积方法,通过修正线性渐变沉积速率制备了高透过率、高色散系数的线性渐变滤光片。在不同材料的膜厚修正过程中,通过匹配高低折射率材料的线性渐变趋势来减小两种材料的失配误差。利用微小光斑测试方法获得了线性渐变滤光片的线性渐变光谱数据,使用扫描电子显微镜表征了滤光片的表面形貌及微观结构。测试结果表明:制备的线性渐变滤光片各个位置的中心波长峰值透过率均达到85%以上,其工作波长为650~1 050nm,中心波长的线性变化率为20nm/mm,线性度误差在5nm以内,带外截止度在0.1%以下。制备的线性渐变滤光片不仅具有好的光谱特性,也具有良好的稳定性,完全满足滤光片在空间应用时对小型化、集成化和稳定性的需求。  相似文献   

2.
研究了制备闪耀凹面光栅的离子束刻蚀工艺,提出了用“解析分区法”设计闪耀凹面光栅的衍射效率.该方法能通过确定离子束入射角,在实验前定量给出平行离子束刻蚀后光栅衍射效率的设计结果.经过理论设计计算出所需波长衍射效率较高的凹面闪耀光栅中心闪耀角,利用刻蚀模拟软件BLAZING计算出离子束刻蚀参数及光刻胶掩模参数;以计算结果为依据,利用全息-离子束刻蚀工艺制作出尺寸为45 mm×40 mm2,曲率半径为224 mm的凹面闪耀光栅,其中心闪耀角约为9.21°,峰值衍射效率为54.8%@300 nm,250 nm处衍射效率为50%,与“解析分区法”计算结果符合较好.实验结果表明,利用“解析分区法”进行凹面闪耀光栅衍射效率设计的方法简单易行,能够有效指导平行离子束刻蚀闪耀凹面光栅工艺,完成高衍射效率凹面闪耀光栅的制作.  相似文献   

3.
线性渐变滤光片是一种在小型快速分光测试设备中广泛应用的光学薄膜器件。讨论了各种线性渐变滤光片的设计方法;给出了用离子辅助沉积(IAD)工艺制备线性渐变滤光片的膜厚修正方法;并分析了线性渐变滤光片光谱测试时,滤光片线性色散系数,测试光斑尺寸对其光谱特性的影响,给出了相应的测试方法和测试结果。  相似文献   

4.
闪耀全息光栅离子束刻蚀工艺模拟及实验验证   总被引:2,自引:1,他引:1  
依据特征曲线法推导了非晶体表面的离子束刻蚀模拟方程,结合全息光栅的刻蚀特点开发出离子束刻蚀模拟程序,并通过实验数据分析并优化了非晶体材料刻蚀速率与离子束入射角的关系方程,最后利用离子束刻蚀实验对所开发的离子束刻蚀模拟程序进行了实验验证.调节掩模与基底材料的刻蚀速率比为2∶1至1∶2,制作了线密度为1 200 1/mm,闪耀角为~8.6°,非闪耀角为34°~98°的4种闪耀光栅,与刻蚀模拟程序的结果进行对比,模拟误差<5%;控制离子束刻蚀时间为6~14 min,制作了线密度为1 200 1/mm,闪耀角为~8.6°,顶角平台横向尺寸为0~211 nm的6种光栅,与刻蚀模拟程序的模拟结果进行对比,模拟误差<1%.比较实验及离子束刻蚀模拟结果表明,离子束刻蚀模拟程序获得的模拟刻蚀轮廓曲线与实际刻蚀轮廓曲线的误差<5%;模拟刻蚀截止点与实际刻蚀截止点误差<1%.实验表明,提出的模拟方程可以准确地描述不同工艺过程和工艺参数对最终刻蚀结果的影响,进而可预知和控制离子束刻蚀过程.  相似文献   

5.
宽波段全息-离子束刻蚀光栅的设计及工艺   总被引:1,自引:0,他引:1  
设计和制作了一种在同一基底上具有多闪耀角的宽波段全息-离子束刻蚀光栅。提出了组合形成宽波段全息-离子束刻蚀光栅的分区设计方法,优化了3种闪耀角混合的宽波段全息光栅设计参数,并利用反应离子束刻蚀装置对该光刻胶掩模进行刻蚀图形转移,采用分段、分步离子束刻蚀技术开展了获得不同闪耀角的离子束刻蚀实验。最后在同一光栅基底上分区制作了位相相同,并具有9,18,29°3个不同闪耀角,口径为60mm×60mm,使用波段为200~900nm的宽波段全息光栅。衍射效率测试结果显示其在使用波段的最低衍射效率超过30%,最高衍射效率超过50%,实验结果与理论计算结果基本符合。与其它方式制作的宽波段光栅相比,采用宽波段全息-离子束刻蚀光栅不但工艺成熟,易于控制光栅槽形,而且光栅有效面积尺寸较大,便于批量复制。  相似文献   

6.
本文介绍了可见区圆形渐变滤光片(VCVF)。这是一种膜层厚度沿着圆形通路成线性变化的典型滤光片,这种滤光片的带宽可达10~50毫微米,峰值透过率为15~50%。本文还讨论了这种滤光片的制备工艺,其特点是在蒸发源与被镀制的基片之间采用二个旋转掩膜挡板,以获得膜层厚度的变化。这种滤光片具有一系列的优点,可以用于诸如热量计、光度计和水污染分析仪器等仪器仪表中。  相似文献   

7.
纳米粒子单层膜作掩模的纳米刻蚀技术研究   总被引:1,自引:0,他引:1  
采用LB(langmuir-blodgett)排布技术制备了大面积高密度的FePt纳米粒子单层膜,利用纳米粒子单层膜作为掩模,通过反应离子刻蚀技术进行了纳米刻蚀研究.实验结果表明,采用纳米粒子单层膜作为掩模,通过控制反应离子刻蚀条件可以实现纳米级(小于50nm)的纳米点阵和纳米柱的刻蚀.  相似文献   

8.
针对强激光系统中常用的1 053nm激光器进行了偏振光栅结构的优化设计。利用严格耦合波理论分析了光栅偏振器的衍射特性及消光比,分析显示偏振光栅周期为600nm,占宽比为0.535~0.55,槽形深度为1 395nm~1 420nm时,可保证其在1 053nm波长下,透射率高于95%,消光比大于1 500。基于分析结果,利用全息光刻技术制作了高质量光刻胶光栅掩模,并采用倾斜转动的离子束刻蚀结合反应离子束刻蚀的方法对该光刻胶光栅掩模进行图形转移,制作了底部占宽比为0.54,槽形深度为1 400nm的光栅偏振器。实验测量显示其透射率为92.9%,消光比达到160。与其他制作光栅偏振器方法相比,采用单光刻胶光栅掩模结合倾斜转动的离子束刻蚀工艺,不但简化了制作工艺,而且具有激光损伤阈值高、成本低的优点。由于该技术可制作大面积光栅,特别利于在强激光系统中应用。  相似文献   

9.
双离子束溅射技术制备带通滤光片   总被引:3,自引:1,他引:2  
研究了采用双离子束溅射沉积技术、以沉积时间作为膜厚控制手段制备带通滤光片的工艺。简要介绍了离子束溅射系统的基本工作原理和膜厚控制技术,描述了分别在K9玻璃和有色玻璃上制备由多层Ta2O5和SiO2薄膜组成的滤光片以及短波通和长波通的工艺过程,最后测试并分析了由短波通和长波通组成带通滤光片的光学性能。实验结果表明,采用双离子束溅射技术,以沉积时间作为膜厚监控手段能够制备出具有优良光性能并满足应用设计要求的带通滤光片。  相似文献   

10.
为实现集成滤光片列阵在单片衬底上的高效制备,提出组合镀膜法,通过磁控反应溅射,以N b2O5和S iO2为介质材料,仅通过8次镀膜就成功制备出了集成64通道的滤光片面阵。滤光片面阵的总体尺寸只有12mm×12mm,各个滤光片通道基本呈线性分布在720.5nm~877.2nm之间,带宽在1.82nm~3.92nm之间。结果表明,组合镀膜法是一种高效的集成滤光片列阵制备方法。  相似文献   

11.
大尺寸衍射光学元件的扫描离子束刻蚀   总被引:1,自引:1,他引:0  
总结了大尺寸衍射光学元件离子束刻蚀技术的研究进展。针对自行研制的KZ-400离子束刻蚀装置,提出了组合石墨束阑结构和多位置分步刻蚀策略来提高离子束刻蚀深度的均匀性,目前在450mm尺寸内的刻蚀深度均匀性最高可达±1%。建立了针对多层介质膜光栅的衍射强度一维空间分布在线检测系统以及用于透射衍射光学元件离子束刻蚀深度的等厚干涉在线检测系统,实现了对大尺寸衍射光学元件离子束刻蚀终点的定量、科学控制,提高了元件离子束刻蚀工艺的成功率。利用上述技术,成功研制出一系列尺寸的多层介质膜光栅、光束采样光栅、色分离光栅以及同步辐射光栅等多种衍射光学元件。  相似文献   

12.
用于1 m Seya-Namioka单色仪的 1 200 lp/mm Laminar光栅   总被引:2,自引:2,他引:0  
针对国家同步辐射实验室燃烧与火焰实验站中1 m Seya-Namioka 单色仪对光栅的需求,采用全息离子束刻蚀工艺制作了1 200 lp/mm Laminar光栅。首先,通过光刻胶灰化技术调节光刻胶光栅掩模占空比,在理论设计的误差允许范围内,对此光栅掩模进行扫描离子束刻蚀;然后,将光栅图形转移到光栅基底中去除残余光刻胶;最后,采用离子束溅射法镀制厚约40 nm的金反射膜,采用热蒸发法镀制厚约60 nm的铝反射膜。用原子力显微镜分析光栅微结构,结果显示光栅槽深为40 nm,占空比为0.45。同步辐射在线波长扫描测试结果表明,镀铝光栅效率明显高于镀金光栅,获得的实验结果与理论计算结果基本符合。镀金光栅已替代进口光栅在线使用3 年,其寿命大大超过复制光栅,基本满足了燃烧实验站的实验研究需求。  相似文献   

13.
Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.  相似文献   

14.
Preparation and sectioning of bacterial spores by focused ion beam and subsequent high resolution secondary ion mass spectrometry analytical imaging is demonstrated. Scanning transmission electron microscopy mode imaging in a scanning electron microscope is used to show that the internal structure of the bacterial spore can be preserved during focused ion beam sectioning and can be imaged without contrast staining. Ion images of the sections show that the internal elemental distributions of the sectioned spores are preserved. A rapid focused ion beam top‐sectioning method is demonstrated to yield comparable ion images without the need for sample trenching and section lift‐out. The lift‐out and thinning method enable correlated transmission electron microscopy and high resolution secondary ion mass spectrometry analyses. The top‐cutting method is preferable if only secondary ion mass spectrometry analyses are performed because this method is faster and yields more sample material for analysis; depth of useful sample material is ~300 nm for top‐cut sections versus ~100 nm for electron‐transparent sections.  相似文献   

15.
为了满足空间衍射成像系统对大口径、轻量化衍射元件的需求,设计制作了直径为400mm的聚酰亚胺(PI)薄膜菲涅尔衍射元件。通过紫外光刻、离子束刻蚀等微细加工方法在石英基底上制作衍射图形,然后将衍射图形复制到PI薄膜上得到菲涅尔衍射型薄膜元件。结合有限元法探究了薄膜复制过程中热应力的变化规律及降低热应力的方法,分析了影响薄膜衍射效率的因素及薄膜制作误差、温度变化对薄膜成像的影响,最终实现了大面积薄膜与基底的分离,并通过局部氧气等离子体轰击提高了薄膜衍射效率的均匀性。经测试,薄膜菲涅尔衍射元件的厚度约为20μm,在波长633nm处的实际衍射效率平均值为33.14%,达到了理论效率的81.83%,衍射效率的均方根值RMS=0.01。实验结果表明,通过紫外光刻、离子束刻蚀和薄膜复制的方法可以得到大口径、高衍射效率的薄膜菲涅尔衍射元件。  相似文献   

16.
高衍射效率的凸面闪耀光栅是高光谱分辨率成像光谱仪的核心分光元件,其制作方法包括机械刻划法、电子束直写法、X射线光刻法、全息离子束刻蚀法等,其中全息离子束刻蚀法因为具备良好的各向异性,不受尺寸与曲面形状限制,杂散光低,完全没有鬼线,制造时间短等优点成为现今光栅制造领域常用方法之一。传统全息离子束刻蚀凸面光栅时基底的弯曲会导致槽形闪耀角的不一致性,并且在制作小闪耀角凸面光栅时基底表面会有部分区域无法被刻蚀和槽形曲面不连续的现象,而摆动刻蚀凸面闪耀光栅可以克服上述缺点。对全息离子束刻蚀方法制作凸面闪耀光栅多方面进行了综述。  相似文献   

17.
Serial block‐face electron microscopy with focused ion beam cutting suffers from cutting artefacts caused by changes in the relative position of beam and sample, which are, for example, inevitable when reconditioning the ion gun. The latter has to be done periodically, which limits the continuous stack‐acquisition time to several days. Here, we describe a method for controlling the ion‐beam position that is based on detecting that part of the ion beam that passes the sample (transmitted beam). We find that the transmitted‐beam current decreases monotonically as the beam approaches the sample and can be used to determine the relative position of beam and sample to an accuracy of around one nanometre. By controlling the beam approach using this current as the feedback parameter, it is possible to ion‐mill consecutive 5 nm slices without detectable variations in thickness even in the presence of substantial temperature fluctuations and to restart the acquisition of a stack seamlessly. In addition, the use of a silicon junction detector instead of the in‐column detector is explored.  相似文献   

18.
A focused ion beam was employed for local target preparation for EBSD analysis. The volume of the ion‐solid interaction is well below 50 nm at glancing incidence for metallic and transition metal oxide samples. Therefore, focused ion beam can successfully be used for electron backscatter diffraction (EBSD) sample preparation. The sample investigated consists of Ni covered with a NiO layer of ~5 μm thickness. Focused ion beam cross‐sectioning of these layers and subsequent electron imaging in addition to EBSD maps shows a bimodal structure of the oxide layer. In order to test the potential of such oxidized samples as electrode materials, single spark erosion experiments were performed. The erosion craters have diameters up to 40 μm and have a depth corresponding to the thickness of the oxide layer. In addition, a deformation zone produced by thermoshock accompanies the formation of the crater. This deformation zone was further investigated by EBSD analysis using a new way of sample preparation employing the focused ion beam technology. This target preparation routine is called Volume of Interest Transfer and has the potential of providing a full three‐dimensional characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号