首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
高速切削加工中,刀屑间的摩擦系数对切削产生重大影响。为此,采用大型仿真软件Deform3D数值模拟了摩擦系数对切削力、残余应力、等效应力、等效应变和切削温度的影响。通过对有限元模拟结果的分析,优选出合理的参数指导生产加工,具有一定的实际意义。  相似文献   

2.
采用有限元方法模拟三维精密切削过程,包括三维正交切削和三维斜角切削。切屑和刀具的摩擦应力采用修正库仑摩擦方程来计算,工件的流动应力是应力、应变、应变率和温度的函数,采用局部网格重划分技术。通过三维切削模拟可以获得在不同刃倾角精密切削过程的条件下切屑形状、切削力和切削温度场的分布情况。仿真结果表明:刃倾角对主切削力和切深抗力影响不大,但对切屑形状、进给抗力和切削温度场分布影响较大。  相似文献   

3.
陈文琳  王荐  李伟  刘宁 《工具技术》2009,43(6):43-47
基于数值模拟技术,利用有限元软件模拟了金属切削过程及切屑的形成;得到了不同工件材料的切屑形态、切屑上应力应变和等效应力的分布,以及应变与切屑卷曲半径之间的关系;分析了等效应力、应变以及剪切应力的大小与分布对切屑形态和断屑的影响,得出切屑上应力、应变的不均匀分布是导致切屑卷曲的主要原因。该结论与切削理论相吻合,为高速切削塑性金属的断屑研究提供了依据。  相似文献   

4.
皮云云  夏伟 《工具技术》2017,51(6):65-68
在大应变挤出切削有限元模拟过程中,设定主切削刀具的刃区型式为倒圆,通过相关参数的变化,仔细观察模拟过程中等效应变、等效应变率等参数的变化规律。研究结果发现:切削过程中的等效应变、等效应变率、等效应力和温度呈带状分布;当倒圆刀刃半径由小增大时,最大等效应变先小幅度减小再大幅度增大;最大等效应变率的变化有起伏,总体趋势为减小;最大等效应力和最高温度基本不变;主切削力的增加效果不明显;进给抗力大小明显增大。  相似文献   

5.
根据金属材料切削加工有限元仿真建模理论建立了基于Deform-3D的金属薄壁零件切削加工有限元模型。通过仿真计算获取切屑形成过程、切削力变化曲线、切削区域应力分布云图、应变分布云图、切削温度场分布云图,并得出结论:仿真实验获得的切削过程参数值符合金属切削理论,仿真研究可行。借助仿真研究可在实际加工前预测切削过程参数值,对优化切削加工过程和提高薄壁零件加工质量具有重要意义。  相似文献   

6.
金属切削变形过程具有高温、高应变率和较大变形的特点。材料的本构关系是用来描述温度、应力、应变等与时间的关系,因此,确定切削区工件材料的本构关系是研究金属材料切削变形及其有限元仿真的关键。本文给出了金属切削本构模型的几种试验方法,介绍了金属切削仿真中常用的本构模型,总结了金属切削领域中本构模型研究存在的不足及未来发展趋势。  相似文献   

7.
根据混凝土率相关连续损伤本构理论,建立了铣刨机铣削水泥混凝土的有限元模型,对不同切削深度下的水泥混凝土的切削温度、应力、应变分布情况以及切削总热能进行了有效的仿真。随着切削深度的增大,水泥混凝土路面Mises等效应力变化很小,维持在940MPa附近,但距离刀尖越近的地方应力越集中;水泥混凝土的应变随切削深度的变化较小,在1.1附近波动,故铣刨机铣削水泥混凝土也可以从剪切应变失效这方面进行研究;切削温度随着切削深度的增大而不断升高,且前角的温度要高出后角温度。  相似文献   

8.
基于ABAQUS的钛合金切削有限元分析   总被引:1,自引:0,他引:1  
孔虎星  郭拉凤  尹晓霞 《机电技术》2011,34(4):22-23,30
基于弹塑性的有限元理论建立了钛合金的二维切削模型,运用通用有限元软件ABAQUS对钛合金的切削加工过程进行了非线性的热.弹塑性仿真分析。研究了切削中涉及到的有限元网格模型、材料本构关系、刀-屑间摩擦和材料失效准则等关键技术,得出了切削中的材料表面应力应变和温度分布,为钛合金的切削工艺优化提供了一种方法。  相似文献   

9.
应用Hopkinson压杆实验装置,确定了航空用钛合金Ti6A14V高应变和高温条件下的应力-应变关系,结合Ti6A14V合金准静态试验数据,建立了适合高速切削仿真的Johnson-Cook本构模型;通过有限元数值模拟,仿真了高速切削Ti6A14V合金的锯齿状切屑形成过程,分析了整个锯齿状切屑形成过程的切削力、切削温度、等效塑性应变的变化,深入探讨了锯齿状切屑的形成机理;将模拟计算得到的切削力和切削温度与试验结果进行了比较,两者具有较好的一致性.  相似文献   

10.
硬态干式切削是近期发展起来的一种先进的切削加工技术,其具有良好的加工柔性、经济性和环保性能,是精加工过程中加工淬硬钢的最佳选择。基于材料变形的弹塑性理论,并结合ABAQUS通用有限元程序的特点和实际切削工况,用J-C模型建立工件材料模型,根据剪切失效准则实现切屑和工件分离,切屑和刀具的接触摩擦采用库仑摩擦定律,对AISI4340钢硬态切削过程进行仿真,分析了等效应力、等效塑性应变云图、切削力变化曲线以及切屑的温度场分布。在理论上,模拟过程与实际切削过程基本符合,为以后的硬态干式切削提供了参考。  相似文献   

11.
利用有限元软件ABAQUS构建钛合金切削过程的二维仿真模型,通过钛合金切削试验验证模型的正确性。对微织构刀具切削钛合金的过程进行仿真,与无微织构刀具切削钛合金的仿真进行对比分析,研究了微织构刀具应力分布、切削力的变化规律以及对等效塑性应变的影响。仿真研究表明,微织构的存在对切削过程中刀具的应力分布有积极的改善作用,可以降低切削力,减少塑性应变。  相似文献   

12.
超精密切削时刀具切削刃的作用机理分析   总被引:3,自引:0,他引:3  
分析了金刚石刀具切削刃的切削作用、脆性材料超精密切削时切屑形成机理;对金刚石刀具切削刃钝圆半径、切削厚度、切削角三者之间的关系进行了描述。结果表明:脆性材料可以实现塑性域超精密切削加工;控制切削参数可以加工出满足要求的表面粗糙度和表面波纹度,为生产实际提供可靠的工艺条件及技术参数。  相似文献   

13.
谭阳  迟毅林  黄亚宇 《工具技术》2007,41(10):36-38
运用有限元方法对二维正交切削加工刀具内部应力进行模拟分析。基于刚塑性有限元方法建立了切削加工过程仿真模型,通过模拟获得了切削加工过程中刀具应力的分布和变化情况。通过对不同切削工艺参数条件下的切削过程进行模拟,分析了刀具几何参数以及切削用量对切削加工过程中刀具应力的影响,为正确选择刀具及切削参数提供了参考。  相似文献   

14.
为了预测立铣加工的切削力,把立铣刀的切削刃离散为一系列无限小的斜角切削单元。对于每个微元斜角切削单元,应用斜角切削理论来建立切屑通过时剪切区的应力、应变、应变率和温度的控制方程。采用数值方法根据控制方程计算出流动应力,并根据斜角切削和铣削之间的力变换关系,把流动应力转化为铣削力。最后,对45钢进行了多组不同切削参数的立铣实验,仿真和实验的对比结果验证了所提出模型的有效性。该方法同样可以用于其他加工方式(如车削和钻削)的建模。  相似文献   

15.
采用ABAQUS有限元软件对切削过程进行了2D和3D数值模拟,分析了切削深度、切削速度等切削工艺参数和刀具前角、刃倾角等刀具几何参数对切削过程的影响;分析过程中考虑切削产生的热量对切削变形的影响,获得了切削应力场、应变场以及温度分布;通过观察和分析切削后表面粗糙度和切屑形状等,为刀具设计和确定工艺参数提供依据。  相似文献   

16.
正交切削区应力应变场的数值模拟   总被引:1,自引:0,他引:1  
王素玉  艾兴  赵军  彭朋 《工具技术》2005,39(11):25-28
采用弹塑性变形理论及数值模拟技术,对直角切削的变形过程进行有限元分析。建立了高速切削条件下正交切削的数值模型,模拟了切削过程中切削区应力、应变场的变化过程,为深入探讨切削机理及规律提供理论依据。  相似文献   

17.
建立了合理的材料本构、接触模型和摩擦模型,基于合理的切屑分离准则,建立了正交切削过程有限元力学模型,应用DEFORM软件实现了正交切削过程数值模拟。研究了不同转速、不同刀具前角和不同刀刃钝圆半径下的正交切削过程,分析了切削过程中应力、应变和切削力的变化特性,获得了轴类零件加工过程中应力、应变、切削力的变化规律。  相似文献   

18.
用人造聚晶金刚石 (PCD)和天然单晶金刚石 (SPD)刀具对无氧铜材料进行了切削试验 ,对加工表面质量进行了检测和分析。结果表明 :两种刀具在超精切削中获得的加工表面质量具有相似性 ,因此PCD刀具在一定程度上可替代SPD刀具进行超精切削加工。  相似文献   

19.
应用Hopkinson压杆实验装置,确定了航空用钛合金Ti6Al4V高应变和高温条件下的应力-应变关系,结合Ti6Al4V合金准静态试验数据,建立了适合高速切削仿真的Johnson-Cook本构模型;通过有限元数值模拟,仿真了高速切削Ti6Al4V合金的锯齿状切屑形成过程,分析了整个锯齿状切屑形成过程的切削力、切削温度、等效塑性应变的变化,深入探讨了锯齿状切屑的形成机理;将模拟计算得到的切削力和切削温度与试验结果进行了比较,两者具有较好的一致性。

  相似文献   

20.
精密、超精密切削时PCD刀具后刀面的错位熨压作用   总被引:2,自引:0,他引:2  
根据精密、超精密切削的特点,对PCD刀具后刀面的熨压作用进行了分析,提出了错位强度的概念,并通过试验获得了PCD刀具后刀面错位熨压的规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号