首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 859 毫秒

1.  随机森林算法在柴油机故障诊断中的应用  
   《机械设计与制造》,2020年第7期
   针对基于单一分类器的柴油发动机常见故障识别效果不够理想,泛化性较差等问题,结合实验数据探索了一种随机森林(Random Forest,RF)分类器,提出小波包分解和随机森林相结合的柴油发动机故障诊断方法。首先,对缸盖振动信号进行小波包分解,并利用分解所得的小波包重构系数计算各频带能量特征;然后,对小波包频带能量特征进行归一化处理,得到特征向量;最后,特征向量作为输入参数输入到随机森林算法中,训练得到分类模型,对柴油机常见故障进行识别。实验结果表明,随机森林方法相比于单一分类器可以更准确的识别出柴油机的运行状态,该方法在柴油发动机在线监测与故障诊断领域中具有良好的应用前景。    

2.  单层网壳损伤识别理论与试验研究  
   闫维明  何浩祥  张爱林  王卓《空间结构》,2009年第15卷第1期
   结构损伤识别可以归结为结构损伤参数的模式识别问题.对结构响应信号进行小波包分解可以获得各频带的信号能量,将此特征向量作为输入,利用支持向量机强大的模式分类功能,可以实现结构的损伤识别.在环境振动下,对1/10比例的单层网壳模型进行损伤识别试验,将不同的杆件沿径向进行相应程度的截面切割用以模拟不同程度的损伤状态.对不同损伤情况的加速度样本进行三层小波包分解,以相应频带的信号能量作为输入建立支持向量机,利用支持向量机对未训练样本的信号能量进行损伤分类.试验结果表明该方法简便准确,验证了小波包和支持向量机方法用于损失识别的有效性.    

3.  小波支持向量机在结构损伤识别中的应用研究  被引次数:2
   何浩祥  闫维明  周锡元《振动、测试与诊断》,2007年第27卷第1期
   基于小波框架理论和支持向量核函数的条件,引入非线性小波基函数构造支持向量机(SVM)的核函数.得到一种具有较强泛化能力的紧致型小波支持向量机。对结构在环境脉动下的反应信号进行小波包分解,利用“能量一损伤状态”的特征提取方法得到特征向量,并作为紧致型小波支持向量机的输人进行训练和分类检验,提出了一种基于完全小波支持向量机的结构损伤识别方法。以一空间单层网壳结构为检测和诊断对象,用该方法对结构的损伤位置和程度进行识另口和分类具有较高的精度,同时该方法具有面向工程实际应用、成本低和分析简便等特点。    

4.  基于小波包变换的支持向量机损伤诊断方法  被引次数:2
   赵学风  段晨东  刘义艳  韩旻《振动、测试与诊断》,2008年第28卷第2期
   针对结构损伤识别中缺少实际损伤样本的问题,提出基于小波包特征提取的支持向量机结构损伤诊断方法.该方法将结构振动信号小波包分解后的频带能量,经过多传感器数据融合后作为特征向量,输入到多分类的支持向量机中,实现了结构多损伤的识别和定位.应用该方法对IASC-ASCE模型进行了分析,试验结果表明,小波包分解频带能量能够较好地反映结构的损伤特征.多传感器数据融合能够使不同传感器的信息相互补充,减小了损伤检测信息的不确定性,提高了损伤诊断准确率.    

5.  基于小波包和组合分类器的脑电信号分类  
   《计算机工程与应用》,2016年第18期
   为了提高脑思维任务分类精度,提出了一种基于小波包分解和多分类器投票组合的运动想象任务分类方法。该方法利用小波包分解对经过预处理的脑电信号进行分解,提取所有频带上的相对小波包能量特征;根据不同脑思维任务下左右半脑各通道间的差异性对C3、C4两通道求取特定频带上的小波包系数的L-2范数作为特征;采用基于投票策略的组合分类器对两种联合特征进行分类,得到了92.85%的识别精度。实验结果表明,联合特征向量较好地反映了左右手运动想象脑电信号的事件相关去同步(ERD)和事件相关同步(ERS)的本质特性;组合分类器识别效果优于单一分类器。    

6.  钢筋混凝土梁损伤的小波包识别方法  
   任宜春  张杰峰  刘哲峰《振动、测试与诊断》,2011年第31卷第5期
   基于小波包能量特征向量的损伤识别是一种对损伤非常敏感的方法.为了更有效地选择特征频带,从频带分解的角度分析了基于小波包分解能量特征向量的结构损伤识别方法.将结构响应信号进行小波包分解,提取各频带的能量.通过分析结构响应频率和小波包分解各频带频率范围,选取信号主要频率所在频带及其相邻频带的能量构成特征向量.当信号频率有微小改变时,特征能量向量的变化远远大于信号频率的变化.当结构出现损伤时,脉冲激励下其动力响应信号的频率有所降低,因此可以通过特征能量向量的变化来识别损伤.通过一根钢筋混凝土梁的试验验证了该方法的有效性.    

7.  基于粗糙集和支持向量机的空间结构健康监测  被引次数:1
   闫维明  何浩祥  马华  周锡元《沈阳建筑工程学院学报(自然科学版)》,2006年第22卷第1期
   目的 为了改进现有损伤诊断方法的不足,降低结构健康监测的成本并提高其准确性和分析速度.方法 基于小波包分解技术、粗糙集特征约简和支持向量机强大的分类功能,提出了一种空间结构损伤诊断方法,并以此为基础建立了空间结构的健康监测系统框架.利用有限元模拟,应用该方法对一单层球面网壳结构进行了损伤诊断.结果 由小波包分解得到的特征向量能够敏感地反映构件的损伤,经过学习的支持向量机基本可以正确地识别出空间结构杆件的损伤位置和程度.结论 经过粗糙集约简的损伤诊断同样有效并提高了计算速度.该方法具有面向工程实际应用、成本低和分析简便等特点。    

8.  基于相对小波能量的滚动轴承故障诊断  被引次数:1
   赵志宏  杨绍普《电子测量与仪器学报》,2011年第25卷第1期
   利用相对小波能量作为特征进行滚动轴承故障诊断。首先将滚动轴承振动信号进行离散小波分解,然后利用各频带的相对小波能量作为特征向量,使用支持向量机作为分类器对轴承故障进行分类。针对轴承内圈故障、滚动体故障、外圈故障3种故障及不同损伤程度的实测数据进行多种分类实验,实验结果表明利用相对小波能量作为滚动轴承故障诊断的特征非常有效,该方法能够识别滚动轴承的故障类型及故障程度,具有一定的工程应用价值。    

9.  基于分类器融合的刀具故障诊断方法研究  
   李 巍  邢邦圣《煤矿机械》,2014年第2期
   根据刀具磨损状态不同时其不同频带的能量不同,将小波包分解方法和基于神经网络的模糊系统融合器相结合,用于车刀状态诊断。采用小波包将信号分解为不同频带的信号,通过求取不同频带的均方根值提取各特征量,然后将特征向量分别输入BP、SVM、ELM、PNN 4种神经网络分类器,将不同分类器的分类结果应用模糊网络进行优化综合。实验结果表明:多分类融合分类识别效果比单个分类器效果要好,提高了对刀具状态的识别精度。    

10.  基于谐波小波包和支持向量机的风机叶片损伤识别研究  
   饶金根 顾桂梅《玻璃钢/复合材料》,2014年第4期
   为了解决风机叶片损伤类型识别的问题,提出了一种基于谐波小波包和支持向量机相结合的声发射源识别方法。由叶片损伤产生的声发射信号经过4层谐波小波包分解后,提取各频段的能量作为特征向量构建支持向量机分类器,通过支持向量机判别叶片损伤类型。在对叶片损伤进行识别时,分别采用谐波小波包和Daubechies小波包分解声发射信号,并进行比较。实验结果表明,采用谐波小波包和支持向量机相结合的方法可以得到良好的识别效果。    

11.  基于小波包能量熵的电能质量扰动识别  
   李宁  任子晖  刘伟伟  王巍《工矿自动化》,2010年第36卷第8期
   提出了一种基于小波包能量熵的电能质量扰动识别方法。该方法对仿真的扰动电压信号进行4层小波包分解,提取小波包能量熵特征向量,利用主分量分析法提取电压信号的小波包特征向量并输入到概率神经网络(PNN)进行扰动识别,实现了扰动样本的最优压缩,简化了扰动分类中神经网络分类器的结构,提高了神经网络扰动识别的速度和精度。仿真结果表明,该方法具有良好的扰动识别能力。    

12.  运用BP-AdaBoost模型识别随机车载作用下大跨斜拉桥拉索损伤  
   谭冬梅  谢华  陈杰  瞿伟廉  查大奎《噪声与振动控制》,2017年第37卷第2期
   为了有效地进行大跨结构的损伤识别,提出随机车载作用下利用BP-AdaBoost(Back Propagation neural network,Adaptive Boosting)模型对大跨斜拉桥拉索进行损伤识别的方法。该方法首先依据交通调查数据,建立随机交通荷载模型,再运用提升框架,对结构损伤前后的振动测试信号进行提升小波包分解,将小波包信号分量能量累积变异值作为特征值,识别斜拉索损伤位置,然后以此建立BP-AdaBoost模型,利用AdaBoost算法和BP神经网络相结合的方法对大跨斜拉桥拉索的损伤程度进行识别,并研究噪声对该算法的影响。数值分析结果表明,该方法有较强的抗噪声干扰能力,在随机车载作用下,运用BP-AdaBoost模型能够有效识别大跨斜拉桥拉索损伤。    

13.  基于支持向量机的张弦梁损伤识别试验  
   何浩祥  闫维明  张爱林《振动、测试与诊断》,2011年第31卷第1期
   对单榀张弦梁的索力损失和腹杆损伤进行了试验研究.对拉索加载不同程度的预应力来模拟索的预应力损失,利用环境脉动和冲击激励,通过采用Fourier变换或小波变换求得索的频率来计算施加在索上的预应力值.试验结果表明,该方法可以有效地监测索预应力.对张弦梁的上部腹杆进行了环境脉动下的损伤试验,对不同的杆件沿径向进行相应程度的截面切割用以模拟不同程度的损伤状态.对加速度样本进行小波包分解得到特征向量,利用支持向量机对特征向量进行损伤分类,验证了支持向量机方法用于损失识别的有效性.当支持向量机和主成分分析结合后,试验的损伤识别效果有明显的提高.    

14.  基于小波包变换与样本熵的滚动轴承故障诊断  被引次数:2
   赵志宏  杨绍普《振动、测试与诊断》,2012年第32卷第4期
   针对滚动轴承振动信号的不规则性和复杂性可以反映轴承故障的发生和发展,提出一种基于小波包变换与样本熵的轴承故障诊断方法。样本熵可以较少地依赖时间序列的长度,将轴承振动信号进行3层小波包分解,利用分解得到的各个频带的样本熵值作为特征向量,利用支持向量机对轴承故障进行分类。对轴承内圈故障、滚动体故障和外圈故障3种故障及不同损伤程度的实测数据进行实验,结果表明该方法取得较高的识别率,具有一定的工程应用价值。    

15.  梁损伤小波包分析和神经网络识别  
   孟范孔  邱志成《噪声与振动控制》,2013年第33卷第1期
   针对柔性悬臂梁裂缝损伤问题进行损伤位置和损伤程度的识别研究。首先用有限元法建立系统动力学模型。然后对系统的动力响应信号进行小波包分解,建立基于小波包能量谱的损伤指标。把损伤指标作为改进BP神经网络的输入特征参数,用分步识别方法进行损伤位置和损伤程度的识别。最后进行了数值仿真研究。仿真结果表明,利用小波包分析和改进的BP神经网络可以精确地识别出柔性梁的损伤位置和损伤程度。    

16.  基于小波包分解和支持向量机的机械故障诊断方法  被引次数:14
   何学文  卜英勇《机械强度》,2004年第26卷第1期
   提出应用小波包分解和支持向量机进行机械故障诊断的方法。该方法将振动信号小波包分解后的频带能量作为特征向量,输入到由多个支持向量机构成的多故障分类器中进行故障识别和分类。试验结果表明,与神经网络相比,采用支持向量机进行故障诊断可以获得更高的诊断精度,表明该方法是有效的、可行的。    

17.  基于提升小波包和神经网络的结构损伤检测  
   陈换过  江金寿  李剑敏等《振动、测试与诊断》,2013年第33卷第1期
   提出一种提升小波包分解、多传感器特征融合和神经网络模式分类相结合的结构损伤诊断方法.首先,对多个传感器采集的振动响应信号进行提升格式小波包分解,定义标准化相对能量并计算每个频带上的相对能量;然后,把这些传感器信号的小波包相对能量融合作为神经网络分类器的输入特征向量,实现损伤的诊断和评价.数值仿真结果表明,提升小波包分解的频带能量分布能够较好地反映结构的损伤特征;特征融合能够使不同传感器的信息相互补充,减小了损伤检测信息的不确定性,使诊断信息具有较高的精度和可靠性.    

18.  提升小波包和BP-AdaBoost模型在大跨斜拉桥拉索损伤识别中的应用  
   谭冬梅  谢华  陈杰  瞿伟廉  韩玲  查大奎《噪声与振动控制》,2015年第35卷第5期
   为了有效地进行工程结构的损伤识别,提出基于提升小波包特征提取和BP-AdaBoost模型的大跨斜拉桥拉索损伤识别方法。该方法首先利用提升框架,将结构损伤前后的振动测试信号进行提升小波包分解,提取小波包信号分量能量并将能量累积变异值作为特征值,识别斜拉索损伤位置,然后以此建立BP-AdaBoost ( Back Propagation neural network,Adaptive Boosting) 模型,利用AdaBoost算法和BP神经网络相结合的方法对大跨斜拉桥拉索的损伤程度进行识别,并研究噪声对该算法的影响。数值分析结果表明,采用基于提升小波包和BP-AdaBoost模型相结合的方法能够有效地识别大跨斜拉桥拉索损伤。    

19.  基于小波包变换和Replicator Neural Network的单位置结构损伤检测  
   《机械强度》,2020年第3期
   为了实现对结构的损伤检测,提出一种基于小波包变换和Replicator Neural Network (RNN)的单位置结构损伤检测方法。首先采用小波包变换对原始振动响应信号进行分解,计算分解得到的各频带的相对频带能量,这些相对频带能量的分布反映了结构特性。然后,将健康结构的相对频带能量作为输入训练RNN。最后,利用训练后的网络即可对结构进行实时损伤检测。实验表明,即使在有噪声干扰下,该方法仍然能够检测出结构是否存在损伤。    

20.  小波包变换和支持向量机相结合在发动机气门间隙故障诊断中的应用  
   张梅军  石文磊  赵亮  李曙光《机械研究与应用》,2009年第22卷第6期
   为了对发动机气门间隙进行故障诊断,在对振动信号进行采集和预处理的基础上,运用小波包频带能量分解技术提取发动机故障的特征向量,以此作为支持向量机分类器(SVM)的训练样本,用经训练的SVM多分类器对发动机不同故障进行自动识别和诊断,实现了信号特征向量提取与故障模式识别的有机结合。实验结果表明,该方法能在机械故障样本少的情况下准确的识别和诊断出发动机气门间隙的故障类型,具有实际的工程应用价值。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号