首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The mass air flow meter is a critical sensor that works based on thermal hot wire technology, used to determine the fuel to be injected into the cylinder and calculate the fuel-air ratio. In order to measure the airflow rate accurately, the flow should be uniform and smooth upstream of the sensor. The flow disturbance with a short straight length upstream of the flow meter results in the noise of the sensor signal. This noise causes unstable mass flow measurement on the system. Flow conditioners can be used to smooth the velocity profile of the flow. In this study, experimental and numerical methods were used to characterize the performance and operating accuracy of the mass flow meter used in heavy-duty truck applications. The flow conditioners were implemented to smooth the velocity profile around the mass flow meter that was disrupted by bends. The flow structures with and without flow conditioner were examined using Particle Image Velocimetry (PIV) to measure the time-averaged velocity. As well as the validated computational fluid dynamics (CFD) model provides data to understand the flow uniformity effect of the conditioner on the mass airflow (MAF) sensor. The optimization study was performed using a full factorial design of experiment (DOE) for flow conditioner design. A robust methodology was developed for the flow conditioner characteristics and mass airflow sensor implementation on the air induction system.  相似文献   

2.
Velocity and turbulence measurements downstream of flow conditioners   总被引:1,自引:0,他引:1  
The flow downstream of three conditioners, a tube bundle and two perforated plates, is investigated experimentally by means of particle image velocimetry and hot wire anemometry for Reynolds numbers of the order 105. The conditioners are exposed to the flow disturbed by two different installations: a 90° single bend and a 2×90° out-of-plane double bend. Velocity profiles, turbulent fluctuations and Reynolds‘ stress are measured. The jets issuing from the holes and tubes of the conditioners are visualised in the near field which extends up to approximately four pipe diameters downstream of the conditioners. The disturbance imposed on the flow by the conditioners disappears at this position, while the decay of the disturbance caused by the installations takes place in the far field. The decay rate in the far field depends on the specific installation. It is found that this decay is more rapid for the double bend. While the velocity profiles match the profile for fully developed flow approximately at a position of 25 diameters downstream of the conditioners, the turbulent equilibrium state is not even reached at 50 diameters. The results also show that the perforated plates have a higher efficiency than the tube bundle in conditioning the disturbed flow.  相似文献   

3.
Installing a flow conditioner is an important method for rectifying irregular and unstable flow to stable flow state within a short flow distance in fluid transportation and control industrial applications. However, classical flow conditioners (such as Laws and Zanker flow conditioners in ISO 5167) with parallel pipeline axial orifices ineffectively rectify the distinct eccentric jet flow caused by valve regulation. The convergence flow conditioner with convergent orifices was innovatively designed for rectifying the eccentric jet flow caused by a ball valve in this study. Three convergent orifice angles (8°, 10°, and 12°) defined as angles between orifice and pipeline axes were considered to compare their effect on eccentric jet flow rectification as well as with the classical Laws flow conditioner (characterized by the convergent orifice angle of 0°) under different valve openings with an experimental setup for monitoring downstream pressures that develop along the pipeline and corresponding numerical simulation used. Pressure loss and throttling effect of installing convergence flow conditioners downstream the ball valve was assessed. Analysis of distributions of the pressure, velocity, and streamline for convergent flow conditioners showed that the flow conditioner with a large convergent orifice angle can effectively improve violent eccentric jet flows, especially under a small valve opening. The axial velocity on various downstream cross sections was extracted to evaluate the velocity uniformity. A dimensionless parameter of velocity eccentric ratio was used to quantify the rectification effect of eccentric jet flow evolving in the downstream pipeline. Results showed that a short pipeline length is needed to obtain additional symmetry and uniform flow field downstream of the flow conditioner with a high convergent orifice angle, that is, the convergence flow conditioner with a high convergent orifice angle demonstrated a strong effect of flow rectification on the valve-induced eccentric jet flow. This work can help understand characteristics of flow rectification on valve-induced eccentric jet flow in scientific research, and provide guidance for the flow conditioner design in fluid engineering.  相似文献   

4.
For systematic investigations of installation effects and for finding efficient ways to minimise these effects, a research project was initiated at the PTB. It covers the design of an automated test facility using a laser Doppler anemometer, the measurement of velocity profiles downstream of several pipe configurations and flow conditioners, as well as the measurement of the change in the gas meter behaviour, namely the shift of the error curve due to the disturbed velocity profiles.

Part I of this paper (presented in this issue) describes the test facility for the investigation of installation effects and shows the relation between pipe configuration and disturbed flow profile for a wide variety of pipe configurations and flow conditioners.

The second part compares the error shift of turbine meters with the characteristic of disturbed flow profiles. For this, three flow field parameters are used to quantify the disturbances of the velocity profiles such as the swirl intensity, flatness and asymmetry of the profile. Considering this, an empirical model is presented to explain the error shift of a turbine meter as a function of these three flow field parameters. The model will be verified for three types of turbine meters and the results will be discussed.  相似文献   


5.
The first part of this paper reports on an automated facility designed to investigate the influence of disturbed flows in pipes on the shift of the error curves of gas flowmeters in situ. This facility can be equipped with several pipe configurations (single and double bends, convergent and divergent sections, straight pipes up to 40 diameters in length etc.) as well as with various types of flow conditioners. It works with atmospheric air at flowrates of up to 5500 m3/h. A two-component semiconductor Laser Doppler Anemometer (LDA) is used to measure the spatial velocity and turbulence fields of the flow along the entire cross section in front of the flowmeter to be investigated. More than 150 velocity distributions have been determined for different pipe configurations at several flowrates and data have been collected to describe the corresponding flowmeter's behaviour. Some typical velocity profiles for the most usual pipe elements and flow conditioners are shown.

The second part of the publication, which will be presented in the following, compares the changes in the meter behaviour with the specific development of the flow characteristics downstream of the pipe configurations investigated. The model found to explain these metering effects will be described, evaluated and verified.  相似文献   


6.
李军 《流体机械》2007,35(5):5-7
将粒子图像测速仪(PIV)和热线风速仪(HWA)应用到低速轴流平面叶栅实验台上.在2个不同进口流量和3个不同叶片高度下,利用热线风速仪测量平面叶栅出口瞬态速度场,并采用激光粒子图像测速仪测量圆柱尾迹和出口速度场的整场信息.研究发现较大的进口速度或较低的叶片高度情况下,叶栅出口二次流流动强烈;同时发现尾迹的存在会破坏均匀流场,导致叶型流动损失的增加.  相似文献   

7.
Spray flows are widely used in several industrial applications, such as combustion engines. Accurate measurement of spray flow characteristics requires sophisticated equipment and techniques. In recent years, the discrete droplet method (DDM), which analyses droplet scattering, has become a mature technique and has been applied to various analyses. We propose an estimation system based on particle image velocimetry (PIV) measurements and an ensemble Kalman filter, together with DDM, to efficiently investigate spray flow characteristics. The proposed method performs data assimilation on the velocity distribution in a two-dimensional cross-section obtained by PIV to estimate the characteristics of the spray flow in three dimensions. In this study, the system was constructed so that droplet particle is ensembled during data assimilation to estimate the droplet diameter distribution indirectly. The proposed method can be used to estimate the spray velocity and droplet size distribution. The numerical solution obtained using DDM was used as a criterion for assimilation and validated by conducting twin experiments. The results showed that, in terms of spray velocity, the estimation error for the velocity component parallel to the main flow was 2% and that for the velocity component perpendicular to the main flow was around 10%. Finally, the velocity and particle size distributions of the spray stream and the three-dimensional droplet distribution were estimated by assimilating the velocity distributions measured by PIV. This technique predicts the spray angle and droplet size distribution from the two-dimensional velocity field of the PIV only and is expected to contribute to the development of injectors and atomizers.  相似文献   

8.
This paper presents the results obtained when placing different designs of perforated plate flow conditioner downstream of two common flow-disturbing installations in turn: a single 90° bend and a twisted S bend. The results comprise a series of LDV measurements of velocity and r.m.s. fluctuation velocity profiles made in two perpendicular planes at locations between 3 and 41 pipe diameters (D) downstream of the conditioners. The flow conditioners were placed at 4D downstream of the flow-disturbing installations. Measurements were also made without the inclusion of a flow conditioner for comparison. Several designs of flow conditioner give profiles within 5% of a fully developed profile 11D downstream of the conditioner; so significant reductions in lengths of meter runs should be possible. The Spearman (NEL) design performs at least as well as other contemporary designs and is available for inclusion in the relevant standards. These measurements were carried out in a water pipeline.  相似文献   

9.
Transition of laminar pulsatile pipe flow into turbulence is one of the current research topics in flow dynamics. Despite the existence of a considerable number of theoretical and experimental studies, the physical mechanism of transition is not well defined. Furthermore, there is almost no information on the start and the end of the transition in terms of pulsatile flow parameters.

In this paper, an approach which consists of attempts to correlate the governing flow parameters is presented to reveal the transition process with particular emphasis on the frictional field. The experimental data collected in slightly compressible, Newtonian, one-dimensional laminar pulsatile pipe flow without a flow reversal were compiled for this purpose. The common oscillation parameters, dimensionless frequency parameter and velocity amplitude ratio A1 were the main variables of the experimental study covering the ranges of and 0.05≤A1≤0.8. The time history of local static pressure gradient and axial velocity field were accumulated and the data were expressed through pulsatile flow, instantaneous λu(t) and time-averaged λu,ta friction factors using momentum-integral equation. A reference friction factor ratio λR, whose definition was based on the concept of steady flow friction was introduced. The start and the end of transition were predicted through the functional relationships of λR with time-averaged and oscillating Reynolds numbers, Reta and Reos by means of a trial–error procedure. The proposed correlations and determined approximate critical limits of transition are only valid in the corresponding ranges of 2000≤Reta≤60 000, 620≤Reos≤18 800 and the analysis is open to discussion.  相似文献   


10.
PIV (Particle Image Velocimetry) technique for flow field measurement has achieved popular self-identify through over ten years development, and its application range is becoming wider and wider. PIV post-processing techniques have a great influence on the success of particle-fluid two-phase flow field measurement and thus become a hot and difficult topic. In the present study, a Phase Respective Identification Algorithm (PRIA) is introduced to separate low-density solid particles or bubbles and high-density tracer particles from the PIV image of particle-fluid two-phase flow. PTV (Particle Tracking Velocimetry) technique is employed to calculate the velocity fields of low-density solid particles or bubbles. For the velocity fields of high-density solid particles or bubble phase and continuous phase traced by high-density smaller particles, based on the thought of wavelet transform and multi-resolution analysis and the theory of cross-correlation of image, a delaminated processing algorithm (MCCWM) is presented to conquer the limitation of conventional Fourier transform. The algorithm is firstly testified on synthetic two-phase flows, such as uniform steady flow, shearing flow and rotating flow, and the computational results from the simulated particle images are in reasonable agreement with the given simulated data. The algorithm is then applied to images of actual bubble-liquid two-phase flow and jet flow, and the results also confirmed that the algorithm proposed in the present study has good performance and reliability for post-processing PIV images of particle-fluid two-phase flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号