首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
《Wear》2006,260(7-8):815-824
The friction and wear behaviour of cermets/steel rubbing pairs were investigated. Friction and wear tests were carried out using three different crèmets on the base of tungsten, titanium and chromium carbides under dry sliding conditions against steel disk (0.45% C). Sliding wear tests were carried out using modified block-on-ring equipment at a sliding speed of 2.2 m/s and normal load 40 N.It is shown that wear resistance and coefficient of friction depend on the type and chemical composition of the cermets. The WC–Co cermets have the highest wear resistance. The wear rate of WC–Co and TiC–NiMo cermets increased with increasing binder content in the cermets. The wear of Cr3C2–Ni cermets is more complicated and depends on the composition of cermets. The wear of WC–Co cermets is caused mainly by preferential removal of the cobalt binder, followed by fracture of the intergranular boundaries and fragmentation of the carbide grains. The main wear mechanism in the TiC–NiMo cermets is polishing (micro-abrasion) and adhesion, resulting in a low wear rate. The main wear mechanism of Cr3C2–Ni cermets involves thermal cracking and fatigue-related crushing of large carbide grains and carbide framework and also adhesion.  相似文献   

2.
《Wear》2007,262(5-6):514-521
In order to improve the wear resistance of the γ-TiAl intermetallic alloy, microstructure, room- and high-temperature (600 °C) wear behaviors of laser clad γ/Cr7C3/TiC composite coatings with different constitution of NiCr–Cr3C2 precursor-mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS), block-on-ring (room-temperature) and pin-on-disk (high-temperature) wear tests. The responding wear mechanisms are discussed in detail. Results show that microstructures of the laser clad composite coatings have non-equilibrium solidified microstructures consisting of primary hard Cr7C3 and TiC carbides and the inter-primary γ/Cr7C3 eutectic matrix, about three to five times higher average microhardness compared with the TiAl alloy substrate. Higher wear resistance than the original TiAl alloy is achieved in the clad composite coatings under dry sliding wear conditions, which is closely related to the formation of non-equilibrium solidified reinforced Cr7C3 and TiC carbides and the positive contribution of the relatively ductile and tough γ/Cr7C3 eutectics matrix and their stability under high-temperature exposure.  相似文献   

3.
Wear behavior of the HVOF deposited Cr3C2–NiCr and WC–Co coatings on Fe-base steels were evaluated by the pin-on-disc mechanism. The constant normal load applied to the pin was 49 N and sliding distance was 4500 m with velocity of 1 m/s, at ambient temperature and humidity. The specific wear rate of WC–Co coating was 3 mm3/N m and Cr3C2–NiCr coating was 5.3 mm3/N m. SEM/EDAX and XRD techniques were used to analyze the worn out surface and wear debris. The Fe2O3 was identified as the major phase in the wear debris. The wear mechanism is mild adhesive wear in nature.  相似文献   

4.
《Wear》2002,252(9-10):832-841
Steel matrix particulate composites were processed by direct addition of various powders to molten medium carbon steel. Fe–TiC and Fe–TiB2 powders were produced using a self-propagating high-temperature synthesis (SHS) reaction and consisted of a dispersion of fine TiC (5–10 μm) and TiB2 particles (2–5 μm), respectively in an iron binder.Addition of the Fe–TiC powder to the steel resulted in the formation of a metal matrix composite containing a homogeneous dispersion of TiC particles. However, addition of the Fe–TiB2 powder resulted in the formation of a parasitic Fe2B phase and TiC within the steel microstructure. In response to this an SHS masteralloy composed of Fe–(50% TiB2+50%Ti) was manufactured which, when added to steel, prevented the formation of Fe2B and resulted in a composite containing a mixture of TiB2 and TiC particles.Dry reciprocating sliding wear behaviour of the three composite materials and their unreinforced counterpart was investigated at room temperature against a white cast iron counterface. Relative wear behaviour of the materials varied as a function of load. In all cases, the composite manufactured by addition of Fe–TiB2 (yielding Fe2B and TiC phases in the steel) exhibited wear rates greater than three times that of the unreinforced alloy. However, improvements in wear resistance over the base steel of up to two and a half times were observed with the other composites where the desired TiC and/or TiB2 phases were retained in the steel. Scanning electron microscopy has been used to interpret wear behaviour in relation to both the as-cast microstructures of the composites and the wear scar microstructures observed.  相似文献   

5.
The influence of the strengthening phases on the tribological characteristics (wear intensity, specific work of wear, coefficient of friction) and the wear mechanisms in two-body abrasion tests with abrasives of different hardnesses (corundum Al2O3, ~2000 HV and silicon carbide SiC, ~3000 HV) has been investigated for PG-SR2 (Cr23C6, 1000–1150 HV), PG-10N-01 (Cr7C3, 1650–1800 HV; CrB, 1950–2400 HV), and 75% PG-SR2 + 25% TiC (TiC, 2500–2900 HV; (Cr,Ni)23(C,B)6 and (Ti,Cr)(C,B), ~2000 HV) coatings. The dominant role of the strengthening phases (compared with the role of the metal matrix) in the abrasive wear resistance of laser-clad NiCrBSi coatings has been estimated. Different wear mechanisms have been identified and, accordingly, different levels of coatings wear resistance have been achieved depending on the ratio between the hardness of the strengthening phases (carbides, borides, carboborides) and abrasive particles.  相似文献   

6.
The tribological behaviour of mechanically alloyed (MA) aluminium-base materials reinforced by 2 vol.% NiAl3, either as large lamellae (MA Al–Ni S) or as homogeneously dispersed rounded particles (MA Al–Ni S2) has been studied. The results are compared with that of nickel-free MA aluminium (MA Al S), taken as reference. All materials were prepared by mechanical milling of Al powder, eventually with the addition of 1 wt% Ni powder, followed by consolidation techniques of cold compaction and sintering. Tribological tests were carried out using the pin-on-disc configuration under variable normal load and temperature. MA Al–Ni S2 shows the highest wear reduction with respect to MA Al–Ni S at the highest load studied. At low load and high temperature, MA Al–Ni S2 shows the highest wear rate, probably due to severe abrasion of the steel counterpart. Friction values and wear mechanisms are discussed from SEM observations and EDS analysis of wear tracks, wear debris morphology and transfer tribolayers.  相似文献   

7.
In this research, silver and alumina particles were co-deposited within Ni–P matrix to obtain Ni–P–Ag–Al2O3 hybrid coating. The structure of coatings was analyzed by X-ray diffraction and the tribological properties of deposits were evaluated by pin on disc tribometer. 3D optical profiler and scanning electron microscopy were used to study wear rate and worn surfaces. The results showed that Ni–P–Ag and Ni–P–Ag–Al2O3 coatings have the self-lubrication property and maximum hardness (∼1310 HV) and wear resistance were obtained for Ni–P–Al2O3 coating. Also, Ni–P–Ag–Al2O3 hybrid nanocomposite coating had higher wear resistance than Ni–P and Ni–P–Ag coatings. Moreover, the best conditions was achieved for heat treated hybrid coating in the concentration of 30 mg/L silver and 150 mg/L alumina in the plating solution.  相似文献   

8.
In the present paper, friction and wear behaviors of a carbon fiber reinforced carbon–silicon carbide–titanium silicon carbide (C-SiC–Ti3SiC2) hybrid matrix composites fabricated by slurry infiltration and liquid silicon infiltration were studied for potential application as brake materials. The properties were compared with those of C/C-SiC composites. The composites containing Ti3SiC2 had not only higher friction stability coefficient but also much higher wear resistance than C/C-SiC composites. At an initial braking speed of 28 m/s under 0.8 MPa pressure, the weight wear rate of the composites containing 5 vol% Ti3SiC2 was 5.55 mg/cycle, which was only one-third of C/C-SiC composites. Self-lubricious film-like debris was formed on the composites containing Ti3SiC2, leading to the improvement of friction and wear properties. The effect of braking speed and braking pressure on the tribological properties of modified composites were investigated. The average friction coefficient was significantly affected by braking speed and braking pressure, but the wear rate was less affected by braking pressure.  相似文献   

9.
《Wear》2006,260(1-2):123-127
In this research, the wear of electroless Ni–P and Ni–P–B4C composite coatings was reviewed. Auto catalytic reduction of Ni in nickel sulfate and sodium hypophosphate bath including suspended B4C particles with different concentration was used to create composite coatings with 12, 18, 25 and 33 vol.% of B4C particles. Coatings 35 μm thick were heat treated at 400 °C for one hour in an argon atmosphere and the wear resistance and friction coefficient of heat-treated samples were determined by block-on-ring tests. All wear tests were carried out at 24 °C, 35% moisture, 0.164 m/s sliding speed and about 1000 m sliding distance. Graphs show that an electroless Ni–P–B4C composite coating with 25 vol.% of B4C had the best wear resistance against a CK45 steel counterface.  相似文献   

10.
Hardmetal coatings prepared by high velocity oxy-fuel (HVOF) spraying represent an advanced solution for surface protection against wear. In the current systematic study the high-temperature oxidation and unidirectional sliding wear in dry and lubricated conditions were studied. Results for a series of experiments on self-mated pairs in dry conditions as part of that work are described in this paper. Coatings with nominal compositions WC-10%Co4%Cr, WC-(W,Cr)2C-7%Ni, Cr3C2-25%NiCr, (Ti,Mo)(C,N)-29%Ni and (Ti,Mo)(C,N)-29%Co were prepared with an ethylene-fuelled DJH 2700 HVOF spray gun. Electrolytic hard chromium (EHC) coatings and bulk (Ti,Mo)(C,N)-15%NiMo (TM10) hardmetal specimens were studied for comparison. The wear behaviour was investigated at room temperature, 400 and 600 °C. For the coatings sliding speeds were varied in the range 0.1–1 m/s for a wear distance of 5000 m and a normal force of 10 N. In some cases the WC- and (Ti,Mo)(C,N)-based coatings showed total wear rates (sum of wear rates of the rotating and stationary samples) of less than 10?6 mm3/Nm, i.e., comparable to values typically measured under mixed/boundary conditions. Coefficients of friction above 0.4 were found for all test conditions. The P × V values as an engineering parameter for coating application are discussed. The microstructures and the sliding wear behaviour of the (Ti,Mo)(C,N)-based coatings and the (Ti,Mo)(C,N)-15%NiMo hardmetal are compared.  相似文献   

11.
D. Roy  S.S. Singh  B. Basu  W. Lojkowski  R. Mitra  I. Manna 《Wear》2009,266(11-12):1113-1118
Resistance to wear is an important factor in design and selection of structural components in relative motion against a mating surface. The present work deals with studies on fretting wear behavior of in situ nano-Al3Ti reinforced Al–Ti–Si amorphous/nanocrystalline matrix composite, processed by high pressure (8 GPa) sintering at room temperature, 350, 400 or 450 °C. The wear experiments were carried out in gross slip fretting regime to investigate the performance of this composite against Al2O3 at ambient temperature (22–25 °C) and humidity (50–55%). The highest resistance to fretting wear has been observed in the composites sintered at 400 °C. The fretting wear involves oxidation of Al3Ti particles in the composite. A continuous, smooth and protective tribolayer is formed on the worn surface of the composite sintered at 400 °C, while fragmentation and spallation leads to a rougher surface and greater wear in the composite sintered at 450 °C.  相似文献   

12.
《Wear》2007,262(7-8):978-985
In this research, hardness and wear resistance of two types of electroless coating have been investigated including Ni–P and Ni–P–Al2O3 coatings. These coatings were applied on AISI 1045 steel discs by electroless deposition process and then they were heat treated at 200, 400 and 600 °C for 1 h. Wear resistance of deposits was measured by the pin on disc method and wear surfaces and debris were studied by scanning electron microscopy (SEM). Also, microstructural changes were evaluated by X-ray diffraction (XRD) analysis.The results showed that the existence of alumina particles in Ni–P coating matrix led to an increase in the hardness and wear resistance of the deposits. It was also found that heat treated coatings at about 400 °C have the maximum hardness and wear resistance.  相似文献   

13.
《Wear》2007,262(7-8):826-832
The non-lubricated, sliding friction and wear behavior of Ti3Si(Al)C2 and SiC-reinforced Ti3Si(Al)C2 composites against AISI 52100 bearing steel ball were investigated using a ball-on-flat, reciprocating tribometer at room temperature. The contact load was varied from 5 to 20 N. For monolithic Ti3Si(Al)C2, high friction coefficients between 0.61 and 0.90 and wear rates between 1.79 × 10−3 and 2.68 × 10−3 mm3 (N m)−1 were measured. With increasing SiC content in the composites, both the friction coefficients and the wear rates were significantly decreased. The friction coefficients reduced to a value between 0.38 and 0.50, and the wear rates to between 2.64 × 10−4 and 1.93 × 10−5 mm3 (N m)−1 when the SiC content ranged from 10 to 30 vol.%. The enhanced wear resistance of Ti3Si(Al)C2 is mainly attributed to the facts that the hard SiC particles inhibit the plastic deformation and fracture of the soft matrix, the oxide debris lubricate the counterpair, and the wear mode converts from adhesive wear to abrasive wear during dry sliding.  相似文献   

14.
The effect of Al2O3 content on the mechanical and tribological properties of Ni–Cr alloy was investigated from room temperature to 1000 °C. The results indicated that NiCr–40 wt% Al2O3 composite exhibited good wear resistance and its compressive strength remained 540 MPa even at 1000 °C. The values obtained for flexural strength and fracture toughness at room temperature were 771 MPa, 15.2 MPa m1/2, respectively. Between 800 °C and 1000 °C, the adhesive and plastic oxide layer on the worn surface of the composite was claimed to be responsible for low friction coefficient and wear rate.  相似文献   

15.
The wear behaviour of textured silicon nitride (Si3N4) ceramics with aligned microstructures was analyzed under abrasive wear conditions. Dry reciprocating self-mated ball-on-flat wear tests were performed to study the influence of different microstructural plane/orientation combinations on the Si3N4 tribological behaviour. Textured materials showed superior wear resistance than non-textured reference Si3N4 for the whole range of loads and contact pressures, 5–50 N and 1.7–3.6 GPa, respectively, with an increase of about 70% for the maximum applied load. Within textured materials, the plane perpendicular to the extruding direction exhibited a 50% higher wear resistance (4 × 10?5 mm3 N?1 m?1) than the parallel plane where the elongated grains were aligned. The severe wear process involved debonding, fracture and debris formation mechanisms. The progress of this sequence depended on the particular microstructure of each plane/orientation combination. A relationship between abrasive wear resistance and selected microstructural parameters has been established.  相似文献   

16.
《Wear》2006,260(9-10):933-941
Sliding friction and wear characteristics of three-dimensional (3-D) braided carbon fabric reinforced epoxy resin (C3D/EP) composites were investigated. Tests were performed on a MM200 tester under normal loads of 50, 150, and 250 N and velocities of 0.42 and 0.84 m/s. A quenched medium carbon steel with a hardness of HRC 52 was used as the counterpart material. The specific wear rate and the coefficient of friction were examined as a function of testing conditions (load, velocity, and sliding distance) and material parameters (fiber volume fraction and fiber–matrix bonding). The results showed that the coefficient of friction and the specific wear rate changed considerably during the running-in period and reached stable values at the steady wear stage. Fiber volume fraction and testing conditions (load and velocity) affected the wear more significantly than the friction. It was also found that fiber–matrix bonding had an impact on the friction and wear of the 3-D composites. Furthermore, the specific wear rate decreased with the increase in the product of load and velocity. Worn surfaces and debris were observed by scanning electron microscope (SEM) and wear mechanisms were discussed in this study.  相似文献   

17.
Hard, friction reducing, wear- and corrosion-resistant coatings, in particular TiC, TiN, Ti(C,N), Cr7C3, borides and combinations of these substances in composite layers, can be applied to steel, Ni(Co) alloys and cemented carbides by cvd and pvd. This paper discusses friction and wear in ambient and more hostile environments, notably ultra-high vacuum and at about 350°C in a He-atmosphere. The corrosion behaviour of TiC in sulphuric acid and in sea water is also covered. Applications of these coatings in machine elements and tooling are described.  相似文献   

18.
《Wear》2006,260(1-2):40-49
The tribological behaviour of TiCN coating prepared by unbalanced magnetron sputtering is studied in this work. The substrates made from austenitic steel were coated by TiCN coatings during one deposition. The measurements were provided by high temperature tribometer (pin-on-disc, CSM Instruments) allowing measuring the dependency of friction coefficient on cycles (sliding distance) up to 500 °C. The evolution of the friction coefficient with the cycles was measured under different conditions, such as temperature or sliding speed and the wear rate of the ball and coating were evaluated. The 100Cr6 balls and the Si3N4 ceramic balls were used as counter-parts. The former were used at temperatures up to 200 °C, the latter up to 500 °C. The wear tracks were examined by optical methods and SEM. The surface oxidation at elevated temperatures and profile elements composition of the wear track were also measured.The experiments have shown considerable dependency of TiCN tribological parameters on temperature. Rise in temperature increased both friction coefficient and the wear rate of the coating in case of 100Cr6 balls. The main wear mechanism was a mild wear at temperatures up to 200 °C; fracture and delamination were dominating wear mechanisms at temperatures from 300 to 500 °C.  相似文献   

19.
A. Mandal  B.S. Murty  M. Chakraborty 《Wear》2009,266(7-8):865-872
Dry sliding wear behaviour of A356–TiB2 composites in T6 condition was tested using a pin-on-disc wear testing machine. The composites were prepared by the reaction of a mixture of K2TiF6 and KBF4 salts with molten alloy. The wear tests were conducted at normal loads of 19.6–78.4 N and a sliding speed of 1 ms?1. A detailed SEM study of wear surface and debris was carried out to substantiate the wear results. The results indicate that wear rate of the composites is a strong function of TiB2 content rather than overall hardness of the composite. The role of Si and TiB2 particles towards the overall mechanism has been discussed.  相似文献   

20.
《Wear》2006,260(1-2):1-9
In the present work, we report the processing and properties of WC–6 wt.% ZrO2 composites, densified using the pressureless sintering route. The densification of the WC–ZrO2 composites was carried out in the temperature range of 1500–1700 °C with varying time (1–3 h) in vacuum. The experimental results indicate that significantly high hardness of 22–23 GPa and moderate fracture toughness of ∼5 MPa m1/2 can be obtained with 2 mol% Y-stabilized ZrO2 sinter-additive, sintered at 1600 °C for 3 h. Furthermore, the friction and wear behavior of optimized WC–ZrO2 composite is investigated on a fretting mode I wear tester. The tribological results reveal that a moderate coefficient of friction in the range from 0.15 to 0.5 can be achieved with the optimised composite. An important observation is that a transition in friction and wear with load is noted. The dominant mechanisms of material removal appear to be tribochemical wear and spalling of tribolayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号