首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
HIP-Si3N4陶瓷/45#钢副干摩擦和水润滑下摩擦学性能   总被引:2,自引:0,他引:2  
利用MPX-2000型盘销式摩擦磨损试验机考察了HIP—Si3N4陶瓷/45^#钢副在干摩擦和水润滑下的摩擦磨损性能;用扫描电子显微镜观察了试件表面的磨损状态;采用X射线电子能谱仪分析了摩擦表面的化学成分:结果表明:干摩擦条件下,HIP—Si3N4陶瓷的磨损速率比45^#钢小,45^#钢发生粘着磨损,HIP—Si3N4陶瓷发生了脆性断裂和脱落;水润滑条件下,摩擦表面产生了Si(OH)4反应膜,降低了磨损,主要是化学腐蚀磨损。  相似文献   

2.
为使全陶瓷轴承在干摩擦工况下可靠运转,选用四氟乙烯(PTFE)材质的保持架为全陶瓷轴承提供润滑.利用Rtec销/盘摩擦磨损试验机,以PTFE盘与氮化硅(Si3 N4)销为摩擦副,研究Si3 N4/PTFE在不同载荷和转速条件下的摩擦磨损性能,通过SEM对Si3 N4表面的转移膜形貌进行观察,分析转移膜形成原因.结果表明...  相似文献   

3.
水润滑硅基非氧化陶瓷摩擦学性能及其表面改性研究进展   总被引:2,自引:2,他引:0  
综述了水润滑条件下硅基非氧化物陶瓷(Si3N4和SiC)摩擦学性能的研究状况,包括水润滑条件下其摩擦磨损特性以及其表面改性技术对其摩擦学性能的影响.硅基非氧化物陶瓷在水中显示出较低的摩擦因数以及良好的抗磨损能力;表面改性技术能有效地改善硅基非氧化陶瓷的水润滑摩擦磨损性能,离子注入技术是表面改性技术的一个重要发展趋势.  相似文献   

4.
采用电弧离子镀技术在45#钢衬底表面沉积了CrNX薄膜.用显微硬度计测试了薄膜的硬度,用X射线衍射仪分析了薄膜的相结构,用球-盘式摩擦磨损试验机评价了在不同介质条件下(干摩擦、水润滑、油润滑)CrNX薄膜的摩擦学性能,用表面轮廓仪测试了磨痕处的磨痕轮廓,用扫描电镜(SEM)观察了薄膜磨痕形貌.结果表明,相对于干摩擦,水润滑和油润滑条件下,CrNX薄膜的摩擦因数和磨痕深度都有明显降低的趋势.干摩擦条件下薄膜主要表现为磨粒磨损;水润滑条件下,主要表现为腐蚀磨损;油润滑条件下由于油膜在两摩擦表面的吸附,薄膜几乎无磨损.  相似文献   

5.
采用双螺杆挤出机熔融共混和注射成型方法制备了PA66/Si3N4纳米复合材料.研究了纳米Si3N4添加量对复合材料的力学性能和摩擦磨损性能的影响.通过对试样磨损表面及其对摩副表面上转移膜的扫描电子显微镜(SEM)观察和X射线光电子能谱(XPS)分析,探讨了其磨损机制.结果表明,纳米Si3N4的加入降低了基体的拉伸强度和弯曲强度,但是在PA66中加入适量的纳米Si3N4颗粒后,摩擦过程中有利于生成较均匀的转移膜,从而降低摩擦因数.同时磨屑里的纳米Si3N4镶嵌到试样摩擦表面,使表面得到局部增强,从而提高其耐磨性能.  相似文献   

6.
L-CKD150润滑油和复合锂基润滑脂广泛运用于石油装备润滑减磨。为研究2种润滑介质对摩擦副摩擦磨损性能及磨损机制的影响差异,采用MMW-1型微机控制立式万能摩擦磨损试验机,开展不同接触压力和线速度及不同润滑环境下摩擦学实验研究。结果表明:实验工况下,销-盘摩擦副表面以磨粒磨损为主,同时存在黏着磨损;相比于L-CKD150润滑工况,复合锂基润滑脂润滑时销-盘表面黏着磨损更为严重,进而加大摩擦因数的波动幅度,最大波动幅度为L-CKD150润滑下的3.7倍;盘试样表面磨粒磨损与接触压力有关,0.5 MPa接触压力下,L-CKD150润滑时磨粒磨损较严重,1.5 MPa下则复合锂基润滑脂润滑时更严重,磨粒磨损是影响盘试样磨损量差异的主要因素。  相似文献   

7.
在SST-ST销-盘式摩擦磨损试验机上考察了Si3N4陶瓷盘/GCr15钢球摩擦副在不同体积分数过氧化氢H2O2介质中的摩擦磨损性能,通过扫描电子显微镜(SEM)和X射线能谱仪(EDS)对Si3N4陶瓷盘磨损表面进行了分析.结果表明:在去离子水条件下,Si3N4陶瓷盘摩擦表面形成的金属粘着转移层使Si3N4陶瓷盘与GCr15钢球之间的摩擦转变为金属与金属之间的摩擦,摩擦因数逐渐增大;在体积分数30%,60%和90%过氧化氢介质中,Si3N4陶瓷盘的主要磨损机制是微裂纹导致的剥落.  相似文献   

8.
两种镍基合金的高温摩擦学性能研究   总被引:4,自引:0,他引:4  
用粉末冶金的方法热压制备了含不同合金相及MoS2或石墨的两种镍基复合材料,测试了合金机械性能及其在室温至600℃范围内的摩擦磨损性能,同时还探讨了其耐磨机理.研究结果表明,由于增强合金相的加入,复合材料的硬度明显增加,抗弯强度却降低了.该合金主要由M基固溶体、不定比化合物CrxSy等相组成,在室温下由于摩擦过程中生成的纳米晶结构的磨屑,材料具有一定的抗磨减摩性能,主要为磨粒磨损;至200℃时摩擦表面氧化变软,没有成膜润滑能力,摩擦学性能下降;600℃高温摩擦时,承载表面及磨屑中的氧化物、钨酸盐及残余硫化物的协同作用使摩擦因数进一步降低.  相似文献   

9.
研究碳纤维/聚四氟乙烯(CF/PTFE)、玻璃纤维/聚四氟乙烯(GF/PTFE)复合材料与氮化硅陶瓷配副在海水环境下的摩擦学性能与润滑机制,分析滑动速度对摩擦副海水润滑性能的影响规律。结果表明:在海水润滑条件下,随着滑动速度的增加,PTFE、CF/PTFE、GF/PTFE材料与Si3N4陶瓷配副时的摩擦学性能均有明显改善,摩擦因数与磨损率均呈显著降低的趋势,其中CF/PTFE复合材料表现出更为优异的摩擦学性能,在1 000 r/min滑动速度下摩擦因数低至0.026。磨损表面表征结果表明,在海水润滑条件下,PTFE基复合材料在摩擦过程中由于摩擦化学反应生成了润滑膜,可为摩擦副提供良好的润滑和减磨作用,从而减少摩擦磨损行为的发生。  相似文献   

10.
高速电弧喷涂Fe-Al涂层在高温磨损中的摩擦氧化行为   总被引:5,自引:0,他引:5  
采用滑动磨损试验方法,研究从室温(23℃)至650 ℃高速电弧喷涂Fe-Al金属间化合物涂层的摩擦氧化行为。结果表明,高温下Fe-Al涂层滑动摩擦因数降低的主要原因是磨损面发生摩擦氧化反应,形成了具有固体润滑作用的氧化物保护层,该保护层由Al2O3、Fe3O4及Fe2O3组成。氧化物保护层形成的机制是磨屑的动态氧化和微区热压烧结。涂层的扁平颗粒在摩擦磨损过程脱落成为磨屑;随着滑动摩擦磨损的进行,在Si3N4球的反复碾压及摩擦热的共同作用下,磨屑将不断地发生断裂、碎化及动态氧化而成为氧化物粉状屑,并通过微区热压烧结方式形成氧化物层,覆盖于磨损涂层表面。在高温下Fe3Al和FeAl金属间化合物相具有较高的强度和硬度,能有效地抵抗较高硬度的Si3N4球的压入及微犁削,使磨损面上的氧化物保护层不易开裂和脱落。  相似文献   

11.
The influence of sliding speed on the unlubricated tribological behaviors of silicon nitride–boron nitride (Si3N4-hBN) composites was investigated with two modes in air by a pin-on-disc tribometer. Using the upper disc–on–bottom pin test mode, as the sliding speed increased, the friction coefficient of the sliding pairs showed an upward trend; for example, from 0.18 at the sliding speed of 0.40 m/s to 0.54 at the sliding speed of 1.31 m/s for the Si3N4/Si3N4–20% hBN pair. The surface analysis indicated that a tribochemical film consisting of SiO2 and H3BO3 formed on the wear surfaces of the Si3N4/Si3N4–20% hBN sliding pair at sliding speeds of 0.40 and 0.66 m/s. Moreover, the formation of this film lubricated the wear surfaces. At the sliding speed of 1.31 m/s, no tribochemical film formed on the wear surfaces, most likely due to the increase in surface temperature. In the upper pin–on–bottom disc test mode, the wear mechanism was dominated by abrasive wear, and no tribochemical products could be detected on the wear surfaces. The increase in sliding speed weakened the degree of abrasive wear, leading to a decrease in the friction coefficients.  相似文献   

12.
The main objective of this article is to study the tribological behavior of Si3N4–hBN composites with different hexagonal boron nitride (hBN) volume fraction under distilled water lubrication. Water-lubricated sliding tests were carried out on a pin-on-disc tester, and Si3N4 was used as friction pair. The results showed that the addition of hBN to Si3N4 resulted in a severe decrease of the friction coefficient, from 0.35 for Si3N4 against Si3N4 to 0.01 for Si3N4-20% hBN against Si3N4 with drip-feed water lubrication; the friction coefficients of Si3N4–hBN/Si3N4 pairs sliding with full immersion water lubrication were as low as 0.01. The morphological and chemical characterization of the worn surfaces were conducted using scanning electron microscopy (SEM), laser scanning microscope, X-ray photoelectron spectroscopy (XPS). The analysis indicated that, with drip-feed water lubrication, hBN in Si3N4–hBN was spalled off during the wearing tests and spalling pits were formed on the wearing surface of Si3N4–hBN composites, then the wear debris were dropped into the pits and reacted with water, and thus a tribochemical film was formed on the wearing surface. The tribochemical film facilitated the wear surfaces of Si3N4–hBN and Si3N4 to smooth with drip-feed water lubrication, while the tribochemical remove facilitated the wear surfaces to smooth with full-immersion water lubrication.  相似文献   

13.
Al6061 matrix composite reinforced with nickel coated silicon nitride particles were manufactured by liquid metallurgy route. Microstructure and tribological properties of both matrix alloy and developed composites have been evaluated. Dry sliding friction and wear tests were carried out using pin on disk type machine over a load range of 20-100 N and sliding velocities of range 0.31-1.57 m/s. Results revealed that, nickel coated silicon nitride particles are uniformly distributed through out the matrix alloy. Al6061-Ni-P-Si3N4 composite exhibited lower coefficient of friction and wear rate compared to matrix alloy. The coefficient of friction of both matrix alloy and developed composite decreased with increase in load up to 80 N. Beyond this, with further increase in the load, the coefficient of friction increased slightly. However, with increase in sliding velocity coefficient of friction of both matrix alloy and developed composite increases continuously. Wear rates of both matrix alloy and developed composites increased with increase in both load and sliding velocity. Worn surfaces and wear debris was examined using scanning electron microscopy (SEM) for possible wear mechanisms. Energy dispersive spectroscope (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS) techniques were used to identify the oxides formed on the worn surfaces and wear debris.  相似文献   

14.
不同摩擦副中Si3N4陶瓷摩擦磨损特性研究   总被引:3,自引:0,他引:3  
奥氏体不锈钢1Cr18Ni9Ti是难切削材料之一。本研究采用一种销盘试验机,模似陶瓷刀具实际切削加工时使用状况,考察了Si_3N_4/不锈钢摩擦副的摩擦学性能,并着重考察了与不锈钢对磨时Si_3N_4陶瓷的磨损特性。作为比较,对Si_3N_4/45号钢摩擦副的摩擦磨损性能也进行了较为详细的考察。试验结果表明,相同试验条件下,Si_3N_4/不锈钢中Si_3N_4,陶瓷的磨损率比Si_3N_4/45~#钢摩擦副中Si_3N_4的磨损率约大2个数量级。润滑剂对两种摩擦副摩擦磨损性能的影响也有很大差别。借助扫描电镜,X光电子能谱,俄歇电子能谱等多种分析手段对Si_3N_4陶瓷的磨损机理进行了分析,并对两种摩擦副中Si_3N_4磨损率的差别作了讨论。  相似文献   

15.
In an attempt to collect information about the tribological performance of copper-based bearings, the friction and wear behaviors of C86300 manganese bronze were investigated. The characteristics of the base material were determined by structural and mechanical investigations. Then, dry sliding pin-on-disc wear tests were performed against an AISI 52100 steel counterface. After the wear tests, the worn surfaces of the pins and wear debris were studied by scanning electron microscopy and energy-dispersive X-ray spectroscopy. In addition, light optical microscopy and microhardness measurements were performed for examination of the steel counterfaces and worn pin subsurface layers. With increasing normal load, the wear rate of commercial C86300 alloy (containing 0.6 wt% Si) decreased initially and then began to increase. After reaching a maximum wear rate at the load of about 60 N, the wear rate decreased again with a further increase in the normal load. However, the wear rate of this C86300 alloy mainly decreased with increasing sliding speed. Adhesive and abrasive wear were the dominant wear mechanisms under the designed conditions.  相似文献   

16.
J. R. Gomes  A. S. Miranda  J. M. Vieira  R. F. Silva   《Wear》2001,250(1-12):293-298
The superior high temperature resistance of silicon nitride (Si3N4) based ceramics makes them suitable for tribological applications above room temperature or in high speed unlubricated sliding. There are some published works on the wear behaviour of Si3N4/metal alloys. However, experimental data are shown in a form that is not of direct use for engineers involved in materials selection. In the present work, Si3N4 pins were tested against tool steel and grey cast iron on a pin-on-disc tribometer. Ceramics were produced by hot-pressing and tested without lubrication at variable temperature and sliding speed. SEM/EDS and XRD analysis were used for chemical and microstructural characterisation of worn surfaces and wear debris. At low speeds (0.05–0.5 m s−1) and room temperature, Si3N4 surfaces are polished-like due to a combination of humidity-assisted tribo-oxidation and abrasive action of very fine wear debris. At high sliding speeds (2–3.5 m s−1), as well as for temperatures in the range 400–600°C, an extensive coherent tribolayer mainly composed by iron oxides spreads over the ceramic surfaces. Polishing and protection by adherent tribolayers are the mechanisms responsible for observed severe and mild wear regimes, respectively. Wear maps are constructed showing the transition of wear regimes in Si3N4/iron alloys contacts determined by constant flash temperature curves. Equations for calculation of bulk and flash contact temperatures in tribocontacts between dissimilar materials are deduced.  相似文献   

17.
The tribological properties of Ni3Al-Cr7C3 composite coating under water lubrication were examined by using a ball-on-disc reciprocating tribotester. The effects of load and sliding speed on wear rate of the coating were investigated. The worn surface of the coating was analyzed using electron probe microscopy analysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The results show the friction coefficient of the coating is decreased under water lubrication. The wear rate of the coating linearly increases with the load. At high sliding speed, the wear rate of the coating is dramatically increased and a large amount of the counterpart material is transferred to the coating worn surface. The low friction of the coating under water lubrication is due to the oxidizing of the worn surface in the wear. The wear mechanism of the coating is plastic deformation at low normal load and sliding speed. However, the wear mechanism transforms to microfracture and microploughing at high load with low sliding speed, and oxidation wear at high sliding speed. It is concluded that the contribution of the sliding speed to an increase in the coating wear is larger than that of the normal load.  相似文献   

18.
J. F.  C. X. 《Wear》2000,240(1-2):180-185
Electroless-plated Ni-based alloy coatings, Ni, Ni–Co and Ni–Mo coatings with thickness less than 5 μm were deposited on surfaces of plasma-sprayed Cr3C2–NiCr coating. The tribological properties of these electroless-plated coatings against the as-sprayed Cr3C2–NiCr coating as sliding pairs were investigated with a block-on-ring arrangement in air at room temperature. It was found that all the Ni-based alloy coatings effectively improved the tribological properties of the Cr3C2–NiCr coating. Especially when the Cr3C2–NiCr coatings plated with Ni–Co and Ni–Mo coatings were against the as-sprayed Cr3C2–NiCr coating as sliding pairs, friction coefficients of 0.10 to 0.13 and coefficients wear coefficients less than 10−6 mm3·N−1·m−1 were achieved. Through examination and analysis of the worn surfaces employing scanning electron microscopy and X-ray photoelectron spectrometer, the improvement in tribological properties of the Cr3C2–NiCr coating may be attributed to the transformation of wear mechanism and the formation of CrO3 on the worn surfaces.  相似文献   

19.
Unlubricated tribological behaviors of silicon nitride–boron nitride (Si 3 N 4 -hBN) composites were investigated with two test modes in air by using a pin-on-disc tribometer. Under upper-disc-on-bottom-pin test mode, the addition of hBN to Si 3 N 4 resulted in a significant decrease of the friction coefficient, from 0.54 for Si 3 N 4 against Si 3 N 4 to 0.19 for Si 3 N 4 -20% hBN against Si 3 N 4 . The surface analysis indicated that a tribochemical film consisting of SiO2 and H 3 BO 3 was formed on the wear surfaces. The formation of tribochemical film might be attributed to the embedment of wear debris into the spalling pits on the wear surfaces of Si 3 N 4 -hBN specimen. The wear debris reacted with moisture in air, and the resultant tribochemical film lubricated the wear surfaces. Under upper-pin-on-bottom-disc test mode, the wear mechanism was dominated by abrasive wear, and no tribochemical products could be detected on the wear surfaces. A slight decrease of the friction coefficient, from 0.85 for Si 3 N 4 /Si 3 N 4 to 0.56 for Si 3 N 4 /Si 3 N 4 -30% hBN, was obtained, which might be attributed to the layered structure of hBN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号