首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In this work, four ingots of Zn–40Al–2Cu–2Si alloy were produced by permanent mould casting. Two of the ingots were subjected to quench-ageing treatment. After examining the microstructure and some mechanical properties of the alloy in both as-cast and heat treated conditions, its friction and wear behaviour were investigated over a range of pressure and sliding speed using a conforming block-on-ring type machine without oil supply which corresponds to “oil cut off”.It was observed that the heat treatment increased the hardness and tensile strength of the alloy. It was also observed that in the case of oil cut off the friction coefficient of the alloy decreased with increasing pressure up to approximately 3 MPa above which the trend reversed. However, the friction coefficient increased with increasing sliding speed after showing a small decrease with it, and the temperature of the wear sample increased with both pressure and sliding speed. It was shown that the wear loss of the alloy increased exponentially with pressure, but linearly with sliding speed. However, the increase in wear loss with sliding speed became exponential at pressures above 4 MPa.As a result of this work, it was concluded that the quench-ageing treatment does not increase only the hardness and tensile strength of Zn–40Al–2Cu–2Si alloy but also its wear resistance during running without oil supply.  相似文献   

2.
The unlubricated wear behaviour of explosive shock treated and, subsequently plasma nitrided Ti–6Al–4 V alloy was studied using a ball-on-disc wear tester. Plasma nitriding was carried out at three different temperatures (700, 800 and 900 °C) for 3, 6, 9 and 12 h. Plasma nitriding after explosive shock treatment enabled a reduction in the wear rate of two orders of magnitude. Detailed investigations of this improved wear performance dependent on the nitriding temperature and time were carried out. The friction and wear data showed a clear breakthrough transition from the nitrided layer to the core of the Ti–6Al–4 V alloy matrix. The lowest wear volume was obtained for the sample, nitrided at 900 °C for 12 h, especially at loads of 2.5, 5 and 7.5 N. Obviously, the hard nitride layers were intimately associated with low wear rate, providing a smooth low friction surface. The coefficient of friction reduced from 0.46 to 0.2 due to a thick and hard compound layer resulting from a high nitrogen diffusion rate caused by explosive shock treatment that expected to increase point defects in the alloy. Detailed examination of the wear tracks showed that plasma nitriding changes the mechanism of wear from one of adhesion for untreated Ti–6Al–4 V to both delamination and mild abrasive.  相似文献   

3.
Titanium alloys have been of great interest in recent years because of their very attractive combination of high strength, low density and corrosion resistance. Application of these alloys in areas where wear resistance is also of importance calls for thorough investigations of their tribological properties. In this work, Ti–6Al–4V and Ti–24Al–11Nb alloys were subjected to dry sliding wear against hardened-steel counter bodies and their tribological response was investigated. A pin-on-disc type apparatus was used with a normal load of 15–45N and sliding speed of 1.88 ms−1. In the steady state, it was demonstrated that Ti–24Al–11Nb had a substantially higher wear resistance (about 48 times) than that of the Ti–6Al–4V alloy tested under a normal load of 45 N. Severe delamination is found to be responsible for the low wear resistance of Ti-6Al-4V. In the case of Ti–24Al–11Nb, two wear mechanisms have been suggested: delamination with a lower degree of severity and oxidative wear. It is thought that the ability of Ti–24Al–11Nb to form a protective oxide layer during wear results in a much lower wear rate in this alloy.  相似文献   

4.
Using a pin-on-disc apparatus, the wear behavior of Cu–15Ni–8Sn alloy aged for different periods of time at 400 °C was investigated under dry condition. The results showed the wear rate was inversely proportional to the hardness of the alloy, but the maximum wear resistance was not consistent with maximum hardness. The alloy contained about 10% (volume) cells precipitated along grain boundaries had the lowest wear rate. The friction coefficient was constant for different hardness. SEM micrographs of the debris and pin revealed that the removal process of surface material involved subsurface deformation, crack nucleation, crack propagation and delamination of the material.  相似文献   

5.
In the present study, the effect of granite reinforcement on the dry sliding wear behaviour of an aluminium–silicon alloy (BS:LM6) was investigated using a pin-on-disc machine. The composite was prepared using liquid metallurgy technique wherein 10 wt.% granite particles were incorporated in the matrix alloy. Sliding wear tests were conducted at applied loads in the range 0.2–1.6 MPa and speeds of 1.89, 3.96 and 5.55 m/s. The matrix alloy was also prepared and tested under identical conditions in order to see the influence of the dispersoid phase on wear behaviour. It was observed that the composite exhibited lower wear rate than that of the matrix alloy. Increasing applied load increased the wear rate. In the case of the composite, the wear rate decreased with speed except at higher pressures at the maximum speed; the trend reversed in the latter case. On the contrary, the matrix alloy exhibited minimum wear rate at the intermediate test speed. Seizure pressure of the composite was significantly higher than that of the matrix alloy, while temperature rise near the contacting surfaces and the coefficient of friction followed an opposite trend. SEM examination of the worn surfaces, subsurface regions and debris enabled to understand the operating wear mechanisms.  相似文献   

6.
Fe–Ni–RE self-fluxing alloy powders were flame sprayed onto 1045 carbon steel. The tribological properties of Fe–Ni–RE alloy coatings under dry sliding against SAE52100 steel at ambient conditions were studied on an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration. Effects of load and sliding speed on tribological properties of the Fe–Ni–RE coatings were investigated. The worn surfaces of the Fe–Ni–RE alloy coatings were examined with a scanning electron microscopy(SEM) and an energy-dispersive spectroscopy(EDS). It was found that the Fe–Ni–RE alloy coatings had better wear resistance than the SAE52100 steel. An adhered oxide debris layer was formed on the worn surface in friction. Area of the friction layer varied with variety of sliding speed, but did not vary with load. The oxide layer contributed to decreased wear, but increased friction. Wear rate of the material increased with the load, but dramatically decreased at first and then slightly decreased the sliding speed. The friction coefficient of the material was 0.40-0.58, and decreased slightly with the load, but increased with sliding speed at first, and then tended to be a constant value. Wear mechanism of the coatings was oxidation wear and a large amount of counterpart material was transferred to the coatings.  相似文献   

7.
Dry sliding friction and wear properties of ternary Al–25Zn–3Cu and quaternary Al–25Zn–3Cu–(1–5)Si alloys were investigated using a pin-on-disc test machine after examining their microstructures and mechanical properties. An alloy (Al–25Zn–3Cu–3Si), which exhibited the highest tensile and compressive strengths, was subjected to T7 heat treatment. Surface and subsurface of the wear samples were investigated using scanning electron microscopy (SEM). The hardness and both tensile and compressive strengths of the alloys increased with increasing silicon content, but the trend reversed for the latter ones above 3% Si. It was observed that T7 heat treatment reduced the hardness and both tensile and compressive strengths of the Al–25Zn–3Cu–3Si alloy, but increased its elongation to fracture greatly. Three distinct regions were observed underneath the surface of the wear samples of the Al–25Zn–3Cu–3Si alloy. The formation of these regions was related to the heavy deformation of surface material and mixing, oxidation and smearing of wear material. Al–25Zn-based ternary and quaternary alloys in both as-cast and heat-treated conditions were found to be superior to SAE 660 bronze as far as their mechanical and dry sliding wear properties are concerned.  相似文献   

8.
The wear behavior of low-cost, lightweight 10 wt% titanium carbide (TiC)-particulate-reinforced Ti–6Al–4V matrix composite (TiC/Ti–6Al–4V) was examined under fretting at 296, 423, and 523 K in air. Bare 10 wt% TiC/Ti–6Al–4V hemispherical pins were used in contact with dispersed multiwalled carbon nanotubes (MWNTs), magnetron-sputtered diamond-like carbon/chromium (DLC/Cr), magnetron-sputtered graphite-like carbon/chromium (GLC/Cr), and magnetron-sputtered molybdenum disulfide/titanium (MoS2/Ti) deposited on Ti–6Al–4V, Ti–48Al–2Cr–2Nb, and nickel-based superalloy 718. When TiC/Ti–6Al–4V was brought into contact with bare Ti–6Al–4V, bare Ti–48Al–2Cr–2Nb, and bare nickel-based superalloy 718, strong adhesion, severe galling, and severe wear occurred. However, when TiC/Ti–6Al–4V was brought into contact with MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings, no galling occurred in the contact, and relatively minor wear was observed regardless of the coating. All the MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings on Ti–6Al–4V were effective from 296 to 523 K, but the effectiveness of the MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings decreased as temperature increased.  相似文献   

9.
The study of plastic deformation and damage accumulation below the contact surfaces is important in order to understand the dry sliding wear behaviour of aluminum alloys. Experimental evidence exists for the nucleation of voids and microcracks around second phase particles in the material layers adjacent to the contact surface. Propagation of these cracks at a certain depth below the surface may lead to the creation of long, thin plate-like wear debris particles. This work studied the deformation processes during sliding wear by means of metallographic observations of subsurface layers in an Al–7% Si (A356 Al) alloy and by finite element analyses. Specifically, the accumulation of subsurface stresses and strains was investigated, using a coupled structural-thermal finite element model based on the Voce-type exponential stress–strain relationship obtained from the sliding wear tests. Additionally, temperature and strain rate effects were taken into account using a constitutive equation based on Johnson–Cook and Cowper–Symonds models.Accordingly during sliding, the flow stress in subsurface layers increased rapidly and reached a saturation stress after a finite number of sliding contacts. The variation of hydrostatic pressure for different loading conditions was also determined as a function of sliding passes: as the sliding process progressed from the first to the seventh contacts, the hydrostatic pressure at the surface increased from 1150 to 1300 MPa. A total temperature increase of 45 K occurred at the surface after the seventh sliding contact. A debris formation model was proposed in which the presence of a maximum damage gradient at critical depth was considered. The model showed that, with a sliding velocity of 10 m/s, and a normal load of 150 N per unit thickness in mm, the material location where the maximum rate of damage occurred corresponded to a normalized depth (depth/counterface diameter) of 0.060. Increasing the load to 250 N/mm caused an increase in the critical depth of damage (a normalized depth of 0.085). Comparisons with the experimental subsurface crack observations indicate that the proposed damage rate calculations provide a good estimation of the subsurface crack propagation depth.  相似文献   

10.
Bronze–graphite composite was prepared using powder metallurgy. The friction and wear behaviors of the resulting composites in dry- and water-lubricated sliding against a stainless steel were comparatively investigated on an MM-200 friction and wear tester in a ring-on-block contact configuration. The wear mechanisms of the bronze–graphite composite were discussed based on examination of the worn surface morphologies of both the composite block and the stainless steel ring by means of scanning electron microscopy equipped with an energy dispersion spectrometry and on determination of some typical elements on the worn surfaces by means of X-ray photoelectron spectroscopy. It was found that the friction coefficient was higher under water lubrication than that under dry sliding and it showed margined change with increasing load under the both sliding conditions. A considerably decreased wear rate of the bronze–graphite composite was registered under water-lubricated sliding than under dry sliding, though it rose significantly at a relatively higher load. This was attributed to the hindered transfer of the composite onto the counterpart steel surface under water-lubricated sliding and the cooling effect of the water as a lubricant, while its stronger transfer onto the steel surface accounted for its higher wear rate under dry sliding. Thus, the bronze–graphite composite with much better wear-resistance under water-lubricated sliding than under dry sliding against the stainless steel could be a potential candidate as the tribo-material in aqueous environment.  相似文献   

11.
Effect of heat treatment on the sliding wear behaviour of aluminium alloy hard particle composite was studied under varying applied load and sliding speed, giving emphasis on the parameters such as wear rate, temperature rise, coefficient of friction and seizure pressure. Hardness is improved due to heat treatment irrespective of the material. Maximum hardness is noted when the materials are aged for 6 h. These facts have been discussed on the basis of nature of worn surface produced after wear. In the present investigation, aging time has been varied from 4 to 10 h at a regular increment of 2 h.  相似文献   

12.
Two grades of WC–10 wt.%Co cemented carbide with or without addition of Cr3C2/VC grain growth inhibitor during liquid phase sintering were produced with the goal to investigate their reciprocating sliding friction and wear behaviour against WC–6 wt.%Co cemented carbide under unlubricated conditions. The tribological characteristics were obtained on a Plint TE77 tribometer using distinctive normal contact loads. The generated wear tracks were analyzed by scanning electron microscopy and quantified topographically using surface scanning equipment. The post-mortem obtained wear volumes were compared to the online assessed wear. Correlations between wear volume, wear rate and coefficient of friction on the one hand and sliding distance and microstructural properties on the other hand were determined, revealing a significant influence of Cr3C2/VC on the friction characteristics and wear performance.  相似文献   

13.
Electrical brushes are used to conduct current between stationary part and moving part of a motor or a generator. To ensure proper current transfer and continuous contact, brushes must be loaded against the sliding contact surface with a sufficient force. High loads increase frictional losses and wear of the brushes and/or sliding surface. While relatively low contact pressure causes arcing and higher voltage drop.In this study, a novel pin-on-slip ring-type friction and wear test machine was designed and manufactured for the purpose of brush testing. Copper–graphite-based electrical brush containing 90 wt% copper and 10 wt% graphite was manufactured by powder metallurgy and the tribological behaviour and voltage drop were investigated at different brush spring pressures at 10–200 kPa with current.It was found that the specific wear curve showed three distinct wear rate regimes, such as low, mild, and severe. Severe wear was observed below 30 kPa and above 120 kPa brush spring pressures (BSP) (3 and 12 N loads, respectively). Arc erosion was the main wear mechanism below 30 kPa brush spring pressure while abrasion was dominant above 120 kPa BSP. Low and mild regimes were observed between 30–50 and 50–120 kPa BSP, respectively. SEM observations showed that a continuous surface layer was formed at the sliding surfaces of the wear samples in low and mild wear regimes. The wear debris was examined by SEM and X-ray diffractometer.  相似文献   

14.
The tribological behavior of bakelite resin–matrix composites reinforced with nanocrystalline Al 6061 T6 particles produced by machining (grain size 70–500 nm) has been studied using block-on-ring and pin-on-disk tests. The polymer–matrix composite reinforced with nanostructured Al 6061 particles aged for 10 h [Al 6061 (3) 10 h] shows a wear reduction of around 60% with respect to the conventional microstructured reinforcement. Also it shows the lowest wear rates when compared with the nanostructured reinforcements aged for 5 h or 1 h, respectively. Friction coefficients and wear rates increased with increasing sliding speed and normal load. Under 10 N and 0.10 m s−1, Al 6061 (3) 10 h showed an initial friction and contact temperature increase and a very severe wear with material transfer to the steel ball surface. Increasing the steel–composite contact temperature to 100 °C (1 N; 0.05 m s−1) produced a one order of magnitude decrease both in friction and wear. Wear mechanisms for the polymer matrix and the aluminum reinforcement are discussed on the basis of SEM and EDS observations.  相似文献   

15.
The wear behavior of an aluminosilicate (Al2O3·SiO2) short-fiber-reinforced Al–12Si alloy composite and the parent Al–12Si alloy were investigated under dry conditions. The results show that the increased wear resistance of Al2O3·SiO2/Al–12Si can be attributed to the formation of a hardened layer in the sub-surface region where realignment and redistribution of fragmented eutectic phase and fragmented aluminosilicate fibers occur during dry sliding.  相似文献   

16.
The chemical structure and tribological behaviour of Ti–6Al–4V plasma source ion implanted with nitrogen then DLC-coated in an acetylene plus hydrogen-glow discharge (bias voltage −10 to −30 kV) were investigated. The as-modified samples have a TiN/H:DLC multilayer architecture (coating resistivity 1.6×109 to 2.4×1011 Ω/cm) and exhibit higher hardness, especially at low loads or plastic penetrations in the order of deposition bias voltage −10, −20 and −30 kV. At a lower contact load (1 N) and higher sliding speed (0.05 m/s), frictional properties in most cases improved, as did wear properties. At a higher contact load (5 N) and lower sliding speed (0.04 m/s), friction showed almost no improvement, and wear properties deteriorated. When the material of the counterbody was then changed from AISI 52100 to Ti–6Al–4V modified as the disc (contact load 5 N unchanged, sliding speed decreased), the friction coefficient decreased (but showed no improvement compared with the unmodified sample), while wear properties deteriorated further, and wear was changed from just the disc to both disc and ball, abrasive and adhesive dominated. Transfer films, mainly made up of wear debris transferred from the disc wear surfaces, were formed on the wear scars of the counterbodies. The deterioration of wear properties of the modified samples at the higher contact load is considered to be caused by the “thin ice” effect.  相似文献   

17.
Tribological behavior of stir-cast Al–Si/SiCp composites against automobile brake pad material was studied using Pin-on-Disc tribo-tester. The Al-metal matrix composite (Al-MMC) material was used as disc, whereas the brake pad material forms the pin. It has been found that both wear rate and friction coefficient vary with both applied normal load and sliding speed. With increase in the applied normal load, the wear rate was observed to increase whereas the friction coefficient decreases. However, both the wear rate and friction coefficients were observed to vary proportionally with the sliding speed. During the wear tests, formation of a tribo-layer was observed, presence of which can affect the wear behavior, apart from acting as a source of wear debris. Tribo-layer formed over the worn disc surfaces was found to be heterogeneous in nature. Morphology and topography of worn surfaces and debris were studied using scanning electron microscope (SEM). Chemical composition of different wear products was obtained using electron probe micro analyzer (EPMA) and X-ray diffraction (XRD) techniques. Possible wear mechanisms operative in Al-MMC—brake pad tribo-couple have been discussed.  相似文献   

18.
Modi  O.P.  Prasad  B.K.  Jha  A.K.  Deshmukh  V.P.  Shah  A.K. 《Tribology Letters》2004,17(2):129-138
This investigation deals with the influence of hardfacing En31 steel separately with Fe–TiC composite and commercial cobalt base (stellite 6) material on their sliding wear behaviour at 2.94 m/s speed and varying applied pressures. Wear response of the samples was substantiated through the scanning electron microscopic studies of the wear surfaces, subsurface regions and debris particles. The hardfaced samples revealed superior wear performance than that of the substrate. Further, the steel hardfaced with cobalt-based stellite offered higher wear resistance over the one overlayed with Fe–TiC composite. The applied pressure controlled the wear behaviour (rate) in a complex manner and its influence was dependent on material composition/microconstituents and test conditions. The friction coefficient got reduced with pressure except in the case of the Fe–TiC composite overlay beyond 2 MPa. The hardfaced samples were noted to be better suited for more severe conditions. Microcracking was quite frequently observed on wear surfaces of the hardfaced material especially under mild wear conditions. Sticking of fine debris particles on to the specimen surface was also observed.  相似文献   

19.
The role played by an externally added solid lubricant like graphite towards controlling the sliding wear behaviour of a zinc-based alloy has been examined in this study. The influence of dispersing hard silicon carbide particles in the alloy was also investigated by testing the composite in identical test conditions. The wear performance of the zinc-based alloy and its composite was compared with that of a gray cast iron. Wear tests were performed in oil lubricated environment. Composition of the lubricant was changed by adding various quantities of graphite (particles) to the oil. The study suggests that the wear response (in terms of wear rate, frictional heating and friction coefficient) of the samples improved in the presence of suspended graphite particles in the oil lubricant. However, this improvement was noticed up to a critical content of graphite particles only and the trend reversed at still higher graphite contents. The zinc-based (matrix) alloy revealed highest wear rate. Dispersoid silicon carbide particles showed a significant improvement in the wear performance of the matrix alloy. The cast iron performed in between the matrix alloy and composite. The frictional heating and friction coefficient were the highest for the composite while the cast iron and the matrix alloy showed a mixed response. Examinations of wear surfaces, subsurface regions and debris particles helped to substantiate the observed wear response of the samples.  相似文献   

20.
The tribological behaviour of SiC, SiC–TiC and SiC–TiC–TiB2 was determined in oscillating sliding against SiC and α-Al2O3 in water at room temperature. The tribo-systems with the composite materials containing TiC and TiB2 differ significantly from the systems with the single phase SiC: The wear is reduced and the friction is increased. The wear reduction up to a factor of 10 is mainly due to the formation of an oxide film containing titanium oxides which is soft, stable in water and well adhering to the bulk material. This oxide film is transferred to the alumina ball but not to the silicon carbide ball.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号