首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteomes are intricate. Typically, thousands of proteins interact through physical association and post-translational modifications (PTMs) to give rise to the emergent functions of cells. Understanding these functions requires one to study proteomes as "systems" rather than collections of individual protein molecules. The abstraction of the interacting proteome to "protein networks" has recently gained much attention, as networks are effective representations, that lose specific molecular details, but provide the ability to see the proteome as a whole. Mostly two aspects of the proteome have been represented by network models: proteome-wide physical protein-protein-binding interactions organized into Protein Interaction Networks (PINs), and proteome-wide PTM relations organized into Protein Signaling Networks (PSNs). Mass spectrometry (MS) techniques have been shown to be essential to reveal both of these aspects on a proteome-wide scale. Techniques such as affinity purification followed by MS have been used to elucidate protein-protein interactions, and MS-based quantitative phosphoproteomics is critical to understand the structure and dynamics of signaling through the proteome. We here review the current state-of-the-art MS-based analytical pipelines for the purpose to characterize proteome-scale networks.  相似文献   

2.
Tumor cells are often found under hypoxic conditions due to the rapid outgrowth of their vascular supply, and, in order to survive hypoxia, these cells induce numerous signaling factors. Akt is an important kinase in cell survival, and its activity is regulated by the upstream phosphoinositide 3-kinase (PI3K) and receptor tyrosine kinases (RTKs). In this study, we examined Akt activation and RTKs/PI3K/Akt signaling using the hypoxia-mimetic cobalt chloride in oral squamous carcinoma cells. Cobalt chloride increases Akt phosphorylation in both a dose- and time-dependent manner. Blocking the activation of the PI3K/Akt pathway using LY294002 abolished Akt activation in response to cobalt chloride, suggesting that Akt phosphorylation by cobalt chloride is dependent on PI3K. In addition, activation of the PI3K/Akt pathway seems to rely on the epidermal growth factor receptor (EGFR), since the inhibition of EGFR attenuated cobalt chloride-induced Akt activation. The results in this study also demonstrate that cobalt chloride increases EGFR protein levels and induces oral squamous cell carcinoma cells to enter S phase.  相似文献   

3.
邹伦妃  张启伟  肖琛  熊淼  郑琦 《质谱学报》2022,43(4):463-472
蛋白质的翻译后修饰复杂多样,通过激酶与磷酸酶调控的磷酸化是最广泛、最重要的翻译后修饰之一。定量分析磷酸化蛋白质的动态变化,有利于阐明磷酸化修饰调控生命活动的机理,了解其在实现生物功能过程中的作用。以质谱为核心的分析方法是当前蛋白质翻译后修饰研究中最常用的定量技术,主要包括无标记定量、内标绝对定量、化学标记等。本文将一种用于蛋白质糖基化分析的标记方法应用于磷酸化多肽的研究。使用二甲胺标记蛋白质的所有酶解肽段,被酰胺化的羧基可提高TiO2对磷酸化多肽的富集特异性以及液相色谱-质谱(LC-MS)检测的灵敏度。稳定同位素标记实验表明,该方法适用于高通量磷酸化多肽的相对定量分析。基于二甲胺衍生的化学标记法在磷酸化多肽的质谱分析中具有优势,有望成为生物组织中磷酸化蛋白质研究的有力工具。  相似文献   

4.
Intermediate filaments (IFs), which form the structural framework of cytoskeleton, have been found to be dramatically reorganized during mitosis. Some protein kinases activated in mitosis are thought to control spatial and temporal IF reorganization through phosphorylation of IF proteins. Rho-associated kinase (Rho-kinase), one of the putative targets of the small GTPase Rho, does phosphorylate IF proteins, specifically at the cleavage furrow during cytokinesis. This cleavage furrow-specific phosphorylation plays an important role in the local IF breakdown and efficient separation of IF networks. Recent studies on Rho signaling pathways have introduced new models about the molecular mechanism of rearrangements of cytoskeletons including IFs during cytokinesis.  相似文献   

5.
6.
质谱鉴定磷酸化蛋白研究进展   总被引:10,自引:0,他引:10  
蛋白磷酸化是真核细胞中信号传导最主要的方式。为了理解信号传导过程 ,知道不同条件下蛋白质中磷酸化蛋白的总量和位点至关重要。基于质谱分析磷酸化蛋白 ,对样品富集、磷酸化位点的找寻以及磷酸化蛋白定量的各种方法及最新进展进行了详细报道与评述  相似文献   

7.
Protein phosphorylation is involved in nearly all essential biochemical pathways and the deregulation of phosphorylation events has been associated with the onset of numerous diseases. A multitude of tandem mass spectrometry (MS/MS) and multistage MS/MS (i.e., MSn) strategies have been developed in recent years and have been applied toward comprehensive phosphoproteomic analysis, based on the interrogation of proteolytically derived phosphopeptides. However, the utility of each of these MS/MS and MSn approaches for phosphopeptide identification and characterization, including phosphorylation site localization, is critically dependant on the properties of the precursor ion (e.g., polarity and charge state), the specific ion activation method that is employed, and the underlying gas‐phase ion chemistries, mechanisms and other factors that influence the gas‐phase fragmentation behavior of phosphopeptide ions. This review therefore provides an overview of recent studies aimed at developing an improved understanding of these issues, and highlights the advantages and limitations of both established (e.g., CID) and newly maturing (e.g., ECD, ETD, photodissociation, etc.) yet complementary, ion activation techniques. This understanding is expected to facilitate the continued refinement of existing MS/MS strategies, and the development of novel MS/MS techniques for phosphopeptide analysis, with great promise in providing new insights into the role of protein phosphorylation on normal biological function, and in the onset and progression of disease. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:600–625, 2011  相似文献   

8.
9.
10.
11.
Exosomes are critical intercellular messengers released upon the fusion of multivesicular bodies with the cellular plasma membrane that deliver their cargo in the form of extracellular vesicles. Containing numerous nonrandomly packed functional proteins, lipids, and RNAs, exosomes are vital intercellular messengers that contribute to the physiologic processes of the healthy organism. During the post-genome era, exosome-oriented proteomics have garnered great interest. Since its establishment, mass spectrometry (MS) has been indispensable for the field of proteomics research and has advanced rapidly to interrogate biological samples at a higher resolution and sensitivity. Driven by new methodologies and more advanced instrumentation, MS-based approaches have revolutionized our understanding of protein biology. As the access to online proteomics database platforms has blossomed, experimental data processing occurs with more speed and accuracy. Here, we review recent advances in the technological progress of MS-based proteomics and several new detection strategies for MS-based proteomics research. We also summarize the use of integrated online databases for proteomics research in the era of big data. © 2020 John Wiley & Sons Ltd. Mass Spec Rev  相似文献   

12.
Mass spectrometry imaging (MSI) has been applied for label-free three-dimensional (3D) imaging from position array across the whole organism, which provides high-dimensional quantitative data of inorganic or organic compounds that may play an important role in the regulation of cellular signaling, including metals, metabolites, lipids, drugs, peptides, and proteins. While MSI is suitable for investigation of the spatial distribution of molecules, it has a limitation with visualization and quantification of multiple molecules. 3D-MSI, however, can be applied toward exploring metabolic pathway as well as the interactions of lipid–protein, protein–protein, and metal–protein in complex systems from subcellular to the whole organism through an untargeted methodology. In this review, we highlight the methods and applications of MS-based 3D imaging to address the complexity of molecular interaction from nano- to micrometer lateral resolution, with particular focus on: (a) common and hybrid 3D-MSI techniques; (b) quantitative MSI methodology, including the methods using a stable isotope labeling internal standard (SILIS) and SILIS-free approaches with tissue extinction coefficient or virtual calibration; (c) reconstruction of the 3D organ; (d) application of 3D-MSI for biomarker screening and environmental toxicological research. 3D-MSI quantitative analysis provides accurate spatial information and quantitative variation of biomolecules, which may be valuable for the exploration of the molecular mechanism of the disease progresses and toxicological assessment of environmental pollutants in the whole organism. Additionally, we also discuss the challenges and perspectives on the future of 3D quantitative MSI.  相似文献   

13.
Colorectal cancer (CRC) is one of the main causes of cancer-related mortality in the developed world despite recent developments in detection and treatment. Several epidemiological studies indicate that metformin, a widely prescribed antidiabetic drug, exerts a protective effect on different cancers including CRC. Furthermore, a recent double-blind placebo-controlled, randomized trial showed that metformin significantly decreased colorectal adenoma recurrence. Studies exploring the mechanism of action of metformin in cells derived from different types of cancers reported many effects including respiratory chain complex 1 inhibition, Akt phosphorylation inhibition, ATP depletion, PKA activation and Wnt signaling inhibition. However, many of these results were obtained employing metformin at concentrations several fold higher than those achieved in target tissues in diabetic patients receiving therapeutic recommended doses of metformin. In contrast, recent studies obtained with metformin at concentrations compatible with those detected in human intestines revealed that metformin elicit responses that target β-catenin, PI3K/Akt, E-cadherin, p120-catenin and focal adhesion kinase which are key molecules and signaling pathways associated to colorectal cancer development. This brief review revisit several know aspects as well as novel ones on the effects of metformin on cancer cells.  相似文献   

14.
Background: Activated hepatic stellate cells (HSCs) are closely involved in the initiation, perpetuation, and resolution of liver fibrosis. Pro-inflammatory cytokine levels are positively correlated with the transition from liver injury to fibrogenesis and contribute to HSC pathophysiology in liver fibrosis. Methods: In this study, we investigated the effect of the pro-inflammatory cytokine interleukin (IL)-1β on the proliferation and signaling pathways involved in fibrogenesis in LX-2 cells, an HSC cell line, using western blotting and cell proliferation assays. Results: IL-1β increased the proliferation rate and α-smooth muscle actin (SMA) expression of LX-2 cells in a dose-dependent manner. Within 1 h after IL-1β treatment, c-Jun N-terminal kinase (JNK), p38, and nuclear factor-κB (NF-κB) signaling was activated in LX-2 cells. Subsequently, protein kinase B (AKT) phosphorylation and an increase in α- SMA expression were observed in LX-2 cells. Each inhibitor of JNK, p38, or NF-κB decreased cell proliferation, AKT phosphorylation, and α-SMA expression in IL-1β-treated LX-2 cells. Conclusion: These results indicate that JNK, p38, and NF-κB signals converge at AKT phosphorylation, leading to LX-2 activation by IL-1β. Therefore, the AKT signaling pathway can be used as a target for alleviating liver fibrosis by the inflammatory cytokine IL-1β.  相似文献   

15.
SHU ZHAO  SHIXIN YE 《Biocell》2023,47(6):1377-1388
Background: This paper aims to establish a light-controlled phosphorylation detection method at the Y785 site of tropomyosin receptor kinase A (TrkA) receptor in mammalian cells by using genetic code expansion technology and detecting the effects of optical activation of this site on the downstream MAPK/ERK pathway. The study is based on the current situation that the regulatory mechanism of TrkA phosphorylation has not been fully elucidated. Methods: Two photosensitive unnatural amino acids, p-azido-L-phenylalanine (AzF) and photo-caged tyrosine (ONB) were introduced into the TrkA-Y785 site by genetic code expansion technology and site-directed mutagenesis. Western blotting and laser confocal imaging were conducted to analyze the effects of this site on activating the MAPK/ERK pathway and nerve cell differentiation before and after photostimulation. Results: Our results supplemented the light-controlled results of the TrkA-Y785 site based on our previous research and verified that Y785 also makes important contributions in regulating the MAPK/ERK pathway. Conclusion: This study demonstrated the significant contributions of the TrkAY785 site in regulating the ERK pathway by precisely controlling the phosphorylation state of a single tyrosine site.  相似文献   

16.
Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis. The biological significance of VEGF, EGF, and bFGF is mediated by their receptors, which belong to the family of tyrosine kinase receptors: Flt-1 (VEGFR-1), KDR (VEGFR-2), EGFR, FGFR-1, FGFR-2, FGFR-3, and FGFR-4. Deeper understanding of the mechanism of activation of these growth factor receptors has allowed the development of a new pharmacological strategy aimed at controlling cancer cell proliferation. The results of a large body of preclinical as well as early clinical studies conducted suggest that targeting the growth factor receptors could represent a significant contribution to cancer therapy.  相似文献   

17.
Mass spectrometry has evolved in recent years to a well-accepted and increasingly important complementary technique in molecular and structural biology. Here we review the many contributions mass spectrometry based studies have made in recent years in our understanding of the important cyclic nucleotide activated protein kinase A (PKA) and protein kinase G (PKG). We both describe the characterization of kinase isozymes, substrate phosphorylation, binding partners and post-translational modifications by proteomics based methodologies as well as their structural and functional properties as revealed by native mass spectrometry, H/D exchange MS and ion mobility. Combining all these mass spectrometry based data with other biophysical and biochemical data has been of great help to unravel the intricate regulation of kinase function in the cell in all its magnificent complexity.  相似文献   

18.
Tumorigenesis is always concomitant with microenvironmental alterations. The tumor microenvironment is a heterogeneous and complex milieu, which exerts a variety of stresses on tumor cells for proliferation, survival, or death. Recently, accumulated evidence revealed that metabolic and oxidative stresses both play significant roles in tumor development and progression that converge on a common autophagic pathway. Tumor cells display increased metabolic autonomy, and the hallmark is the exploitation of aerobic glycolysis (termed Warburg effect), which increased glucose consumption and decreased oxidative phosphorylation to support growth and proliferation. This characteristic renders cancer cells more aggressive; they devour tremendous amounts of nutrients from microenvironment to result in an ever‐growing appetite for new tumor vessel formation and the release of more “waste,” including key determinants of cell fate like lactate and reactive oxygen species (ROS). The intracellular ROS level of cancer cells can also be modulated by a variety of stimuli in the tumor microenvironment, such as pro‐growth and pro‐inflammatory factors. The intracellular redox state serves as a double‐edged sword in tumor development and progression: ROS overproduction results in cytotoxic effects and might lead to apoptotic cell death, whereas certain level of ROS can act as a second‐messenger for regulation of such cellular processes as cell survival, proliferation, and metastasis. The molecular mechanisms for cancer cell responses to metabolic and oxidative stresses are complex and are likely to involve multiple molecules or signaling pathways. In addition, the expression and modification of these proteins after metabolic or oxidative stress challenge are diverse in different cancer cells and endow them with different functions. Therefore, MS‐based high‐throughput platforms, such as proteomics, are indispensable in the global analysis of cancer cell responses to metabolic and oxidative stress. Herein, we highlight recent advances in the understanding of the metabolic and oxidative stresses associated with tumor progression with proteomics‐based systems biology approaches. © 2012 Wiley Periodicals, Inc., Mass Spec Rev 32:267–311, 2013  相似文献   

19.
Photomanipulation (photobleaching, photoactivation, or photoconversion) is an essential tool in fluorescence microscopy. Fluorescence recovery after photobleaching (FRAP) is commonly used for the determination of lateral diffusion constants of membrane proteins, and can be conveniently implemented in confocal laser scanning microscopy (CLSM). Such determinations provide important information on molecular dynamics in live cells. However, the CLSM platform is inherently limited for FRAP because of its inflexible raster (spot) scanning format. We have implemented FRAP and photoactivation protocols using structured illumination and detection in a programmable array microscope (PAM). The patterns are arbitrary in number and shape, dynamic and adjustable to and by the sample characteristics. We have used multispot PAM–FRAP to measure the lateral diffusion of the erbB3 (HER3) receptor tyrosine kinase labeled by fusion with mCitrine on untreated cells and after treatment with reagents that perturb the cytoskeleton or plasma membrane or activate coexpressed erbB1 (HER1, the EGF receptor EGFR). We also show the versatility of the PAM for photoactivation in arbitrary regions of interest, in cells expressing erbB3 fused with the photoconvertible fluorescent protein dronpa. dronpa. Microsc. Res. Tech., 2009. © 2009 Wiley-Liss, Inc.  相似文献   

20.
The phylogenetic position of the phylum Porifera (sponges) is near the base of the kingdom Metazoa. During the last few years, not only rRNA sequences but, more importantly, cDNA/genes that code for proteins have been isolated and characterized from sponges, in particular from the marine demosponge Geodia cydonium. The analysis of the deduced amino acid sequences of these proteins allowed a molecular biological approach to the question of the monophyly of the Metazoa. Molecules of the extracellular matrix/basal lamina, with the integrin receptor, fibronectin, and galectin as prominent examples, and of cell-surface receptors (tyrosine kinase receptor), elements of sensory systems (crystallin, metabotropic glutamate receptor) as well as homologs/modules of an immune system (immunoglobulin-like molecules, scavenger receptor cysteine-rich [SRCR]- and short consensus repeats [SCR]-repeats), classify the Porifera as true Metazoa. As living fossils, provided with simple, primordial molecules allowing cell-cell and cell-matrix adhesion as well as processes of signal transduction as known in a more complex manner from higher Metazoa, sponges also show pecularities not known in later phyla. In this paper, the adhesion molecules presumably involved in the sponge immune system are reviewed; these are the basic adhesion molecules (galectin, integrin, fibronectin, and collagen) and especially the highly polymorphic adhesion molecules, the receptor tyrosine kinase as well as the polypeptides comprising scavenger receptor cysteine-rich (SRCR) and short consensus repeats (SCR) modules. In addition, it is reported that in the model sponge system of G. cydonium, allogeneic rejection involves an upregulation of phenylalanine hydroxylase, an enzyme initiating the pathway to melanin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号