首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental results of friction and topography measurements are presented which demonstrate the mutual modification of friction and contact topography. The effect of topographical ‘landmarks’ on friction was tested by Al2O3-balls sliding over Ti-ridges on Ti-surface and by Si3N4-balls sliding over grooves in SiO2-surfaces. However, experiments of 100Cr6-balls sliding against 100Cr6-substrates in ultrahigh vacuum, Al2O3-balls sliding on DLC coated 100Cr6 and Si3N4-balls sliding on SiO2-surfaces reveal that the formation of triboreaction layers and moreover the creation of wear particles can screen the effect of the topographical ‘landmarks’ completely. Wear particles and their exact behaviour in the contact area can affect friction in a stochastical and hence unpredictable way. Most modern friction theories have difficulties in coping with this problem.  相似文献   

2.
Friction and wear behaviors of diamond-like carbon (DLC) film in humid N2 (RH-100%) sliding against different counterpart ball (Si3N4 ball, Al2O3 ball and steel ball) were investigated. It was found that the friction and wear behaviors of DLC film were dependent on the friction-induced tribochemical interactions in the presence of the DLC film, water molecules and counterpart balls. When sliding against Si3N4 ball, a tribochemical film that mainly consisted of silica gel was formed on the worn surface due to the oxidation and hydrolysis of the Si3N4 ball, and resulted in the lowest friction coefficient and wear rate of the DLC film. The degradation of the DLC film catalyzed by Al2O3 ball caused the highest wear rate of DLC film when sliding against Al2O3 ball, while the tribochemical reactions between DLC film and steel ball led to the highest friction coefficient when sliding against steel ball.  相似文献   

3.
Miriam Kupková  Martin Kupka  Ján Dusza 《Wear》2005,258(9):1462-1465
Irregular fluctuations of friction coefficient around the mean value were analysed by means of fractal geometry methods. Particular data were recorded during the steady-state stage of dry sliding tests carried out in Si3N4 ball - on - Si3N4/SiC nanocomposite disc configuration. It was proven that the set of points {sliding distance (time), friction coefficient}, considered as a geometric object in a two-dimensional space, has the property of a fractal curve. The fractal dimension of this curve increased with increasing wear rate gained in a particular wear test. This could indicate a possible correlation between the wear rate and the fractal dimension of friction coefficient as a function of sliding distance (time).  相似文献   

4.
The friction and wear properties of the polyetheretherketone (PEEK) based composites filled with 5 mass% nanometer or micron Al2O3 with or without 10 mass% polytetrafluroethylene (PTFE) against the medium carbon steel (AISI 1045 steel) ring under the dry sliding condition at Amsler wear tester were examined. A constant sliding velocity of 0.42 m s−1 and a load of 196 N were used in all experiments. The average diameter 250 μm PEEK powders, the 15 or 90 nm Al2O3 nano-particles or 500 nm Al2O3 particles and/or the PTFE fine powders of diameter 50 μm were mechanically mixed in alcohol, and then the block composite specimens were prepared by the heat compression moulding. The homogeneously dispersion of the Al2O3 nano-particles in PEEK matrix of the prepared composites was analyzed by the atomic force microscopy (AFM). The wear testing results showed that nanometer and micron Al2O3 reduced the wear coefficient of PEEK composites without PTFE effectively, but not reduced the friction coefficient. The filling of 10 mass% PTFE into pure PEEK resulted in a decrease of the friction coefficient and the wear coefficient of the filled composite simultaneously. However, when 10 mass% PTFE was filled into Al2O3/ PEEK composites, the friction coefficient was decreased and the wear coefficient increased. The worn scars on the tested composite specimen surfaces and steel ring surfaces were observed by scanning electron microscopy (SEM). A thin, uniform, and tenacious transferred film on the surface of the steel rings against the PEEK composites filled with 5 mass% 15 nm Al2O3 particles but without PTFE was formed. The components of the transferred films were detected by energy dispersive spectrometry (EDS). The results indicated that the nanometer Al2O3 as the filler, together with PEEK matrix, transferred to the counterpart ring surface during the sliding friction and wear. Therefore, the ability of Al2O3 to improve the wear resistant behaviors is closely related to the ability to improve the characteristics of the transfer film.  相似文献   

5.
The tribological characteristics of low-pressure plasma-sprayed (LPPS) Al2O3 coating sliding against alumina ball have been investigated from room temperature to 800 °C. These friction and wear data have been compared quantitatively with those of bulk sintered alumina to obtain a better understanding of wear mechanisms at elevated temperatures. The friction and wear of Al2O3 coating show a strong dependence on temperature, changing from a mild to a severe wear regime with the increase of temperature. The coefficient of friction at room temperature is approximately 0.17 to 0.42, depending on applied load. The tribochemical reaction between the coating surface and water vapor in the environment and the presence of the hydroxide film on the Al2O3 coating reduce the friction and wear at room temperature as contrasted to those of bulk sintered alumina. At intermediate temperatures, from 400 to 600 °C, the friction and wear behavior of Al2O3 coating depends on the inter-granular fracture and pull-out of Al2O3 grains. At above 700 °C, formation and deformation of fine grain layer, and abrasive wear in the form of removal of fine alumina grains further facilitate the friction and wear process of Al2O3 coating.  相似文献   

6.
The friction and wear properties of Ti6Al4V sliding against AISI52100 steel ball under different lubricative media of surface-capped copper nanoclusters lubricant—Cu nanoparticles capped with O,O′-di-n-octyldithiophosphate (Cu-DTP), rapeseed oil and rapeseed oil containing 1 wt% Cu-DTP was evaluated using an Optimol SRV oscillating friction and wear tester. The wear mechanism was examined using scanning electron microscopy (SEM) and X-ray photoelectron spectrosmeter (XPS). Results indicate that Cu-DTP can act as the best lubricant for Ti6Al4V as compared with rapeseed oil and rapeseed oil containing 1 wt% Cu-DTP. The applied load and sliding frequency obviously affected the friction and wear behavior of Ti6Al4V under Cu-DTP lubricating. The frictional experiment of the Ti6Al4V sliding against AISI52100 cannot continue under the lubricating condition of rapeseed oil or rapeseed oil containing 1 wt% Cu-DTP when the applied load are over 100 N. Surprisingly, the frictional experiment of Ti6Al4V sliding against AISI52100 steel can continue at the applied load of 450 N under Cu-DTP lubricating. The tribochemical reaction film containing S and P is responsible for the good wear resistance and friction reduction of Ti6Al4V under Cu-DTP at the low applied load. However, a conjunct effect of Cu nanoparticle deposited film and tribochemical reaction film containing S and P contributes to the good tribological properties of Ti6Al4V under Cu-DTP at the high-applied load.  相似文献   

7.
Phase transition of CNx coatings by sliding against a Si3N4 ball has been studied by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) to understand this super-low friction phenomena in N2. A pin-on-disk type tribometer was constructed to determine the tribological properties of this coating when sliding against a Si3N4 ball in N2. The analytical results by AES and XPS showed that the nitrogen atoms desorbed from the top layers of the coating, and that the layers changed to a graphite-like structure without nitrogen during a friction coefficient decrease to lower than 0.01. The structural transition of CNx is discussed in this paper.  相似文献   

8.
The tribocorrosion property of a Ni-17.5Si-29.3Cr alloy against a Si3N4 ball was studied in comparison with AISI321 stainless steel using a ball-on-disk reciprocating tribotester in 1 M sulfuric acid (H2SO4) solution. The effects of load and sliding speed on the tribocorrosion properties of the alloy were investigated. The results indicated that the wear rate of the alloy increased while the friction coefficient decreased with increasing load. The wear rate of the alloy increased linearly with increasing sliding speed and the friction coefficient increased in the initial stages and then remained constant with increasing sliding speed. The wear mechanisms were mainly microploughing, uniform corrosion and pitting corrosion. Under the experimental conditions of the present study, the Ni-17.5Si-29.3Cr alloy showed excellent corrosion-resistence and anti-wear ability compared with AISI321 stainless steel.  相似文献   

9.
We report here on the friction behavior of fine- and coarse-grained Ti3SiC2 against steel and Si3N4 balls. Two successive friction regimes have been identified for both grain sizes and both counterparts. First, Type I regime is characterized by a relatively low (0.1–0.15) friction coefficient, and very little wear. Sliding occurs between a tribofilm on the ball and the Ti3SiC2 plane when against steel. Then, a Type II regime often follows, with increased friction coefficients (0.4–0.5) and significant wear. Compacted wear debris seems to act as a third body resulting in abrasion of the ball, even in the case of Si3N4. The transition between the two regimes occurs at different times, depending on various factors such as grain size, type of pin, and normal load applied. Some experiments under vacuum showed that the atmosphere plays also a major role. The reason for this evolution is not fully clear at that time, but its understanding is of major technological importance given the unusual good properties of this material.  相似文献   

10.
To improve water lubrication of ceramics at a lower sliding velocity, the effect of the addition of silane coupling agents was investigated. Si3N4 and Al2O3 were slid against themselves in water with and without the addition of silane coupling agents in amounts ranging from 0.05 to 0.10 mol/l. Silane coupling agents containing one or more amino groups were effective in reducing the friction of Si3N4 and Al2O3 in water. Si3N4 also showed significant wear reduction but not Al2O3. However, the addition of a silane coupling agent containing an epoxy group increased both friction and wear of Si3N4. Improved lubricative characteristics of Si3N4 in water and in silane coupling agent solutions were obtained when Si3N4 contained smaller amounts of sintering additives. The adsorption behaviour of a silane coupling agent on ceramics was examined using both Fourier transform infrared spectroscopy and thin layer chromatography to clarify the interaction between the silane coupling agent and the ceramics. The role of polysiloxane film formation on ceramics is discussed to demonstrate the lubrication properties of ceramics.  相似文献   

11.
In this study, the tribological properties of polytetrafluoroethylene (PTFE) composites filled with polyetheretherketone (PEEK) and nano-Al2O3 particles were studied using a block-on-ring wear tester. The tribological performance of the composites was affected by the experimental parameters (sliding speed, normal load, and environmental temperature) and the composites achieved a high-speed sliding friction state. The results showed that the PEEK and nano-Al2O3 particles significantly improved the wear resistance of the PTFE composites. In addition, the nano-Al2O3 particles increased the hardness of the composites and enhanced the mechanical properties to enable applications in a wider range of industrial fields. The effects of the sliding speed and normal load on the tribological properties were more significant than that of the environmental temperature. In addition, the entire wear process was divided into three stages (the initial wear stage, severe wear transition stage, and ultralow stable wear stage), according to the evolution of the tribological characteristics (wear rate, morphology of the worn surface and transfer film, and wear debris morphology).  相似文献   

12.
Fe3Si, Fe3Si alloys containing Cu were fabricated by arc melting followed by hot-pressing. The friction and wear behaviors of Fe3Si based alloys with and without Cu addition against Si3N4 ball in water-lubrication were investigated. The friction coefficient and the wear rates of Fe3Si based alloys decreased as the load increased. The wear rate of Fe3Si was higher than that of AISI 304. The addition of Cu can significantly improve the friction and wear properties of Fe3Si based alloys and substantially reduce the wear rates of Si3N4 ball. The wear rate of Fe3Si–10%Cu was 2.56 × 10−6 mm3 N−1 m−1 at load of 20 N and decreased to 1.64 × 10−6 mm3 N−1 m−1 at load of 90 N. The wear rate of Si3N4 ball against Fe3Si–10%Cu was 1.41 × 10−6 mm3 N−1 m−1, while the wear rate of Si3N4 ball against AISI 304 was 5.20 × 10−6 mm3 N−1 m−1 at load of 90 N. The wear mechanism was dominated by micro-ploughing. The combination of mechanical action (i.e., shear, smear and transference of Cu) and tribochemical reaction of Si3N4 with water was responsible for the improved tribological behavior of Fe3Si alloys containing Cu under high loads.  相似文献   

13.
Xian Jia  Xiaomei Ling 《Wear》2005,258(9):1342-1347
In the present study, the abrasive wear characteristics of Al2O3/PA1010 composite coatings were tested on the turnplate abrasive wear testing machine. Steel 45 (quenched and low-temperature tempered) was used as a reference material. The experimental results showed that when the Al2O3 particles have been treated with a silane coupling agent (γ-aminopropyl-triethoxysilane), the abrasive wear resistance of Al2O3/PA1010 composite coatings has a good linear relationship with the volume fraction of Al2O3 particles in Al2O3/PA1010 composite coatings and the linear correlation coefficient is 0.979. Under the experimental conditions, the size of Al2O3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance of Al2O3/PA1010 composite coatings. By treating the surface of Al2O3 particles with the silane coupling agent, the distribution of Al2O3 particles in PA1010 matrix is more homogeneous and the bonding state between Al2O3 particles and PA1010 matrix is better. Therefore, the Al2O3 particles make the Al2O3/PA1010 composite coatings have better abrasive wear resistance than PA1010 coating. The wear resistance of Al2O3/PA1010 composite coatings is about 45% compared with that of steel 45.  相似文献   

14.
Ziqi Sun  Ling Wu  Meishuan Li  Yanchun Zhou 《Wear》2009,266(9-10):960-967
Reciprocating ball-on-flat dry sliding friction and wear experiments have been conducted on single-phase γ-Y2Si2O7 ceramic flats in contact with AISI 52100 bearing steel and Si3N4 ceramic balls at 5–15 N normal loads in an ambient environment. The kinetic friction coefficients of γ-Y2Si2O7 varied in the range over 0.53–0.63 against AISI 52100 steel and between 0.51–0.56 against Si3N4 ceramic. We found that wear occurred predominantly during the running-in period and it almost ceased at the steady friction stage. The wear rates of γ-Y2Si2O7 were in the order of 10?4 mm3/(N m). Besides, wear debris strongly influenced the friction and wear processes. The strong chemical affinity between γ-Y2Si2O7 and AISI 52100 balls led to a thick transfer layer formed on both contact surfaces of the flat and counterpart ball, which changed the direct sliding between the ball and the flat into a shearing within the transfer layer. For the γ-Y2Si2O7/Si3N4 pair, a thin silica hydrate lubricant tribofilm presented above the compressed debris entrapped in the worn track and contact ball surface. This transfer layer and the tribofilm separated the sliding couple from direct contact and contributed to the low friction coefficient and wear rate.  相似文献   

15.
The friction and wear behaviour of SiC, Si3N4 and SiC/Si3N4 composite ceramics were investigated with oscillating sliding (gross slip fretting) at room temperature. The influence of counter body material and the humidity of the surrounding air was studied with a ball-on-disc configuration with different ball materials (1000Cr6, Al2O3 SiC and Si3N4). The effect of RH on friction is marginal with exception of SiC (low friction) as counter body material. The wear behaviour, however, is strongly affected by humidity, showing inverse trends for different counter body materials. Consequently, the wear behaviour of a tribo couple can be improved by selecting an adequate mating material. The results reveal the necessity to control RH in tribological tests. For estimation of the performance of tribo couples under varying environmental conditions, a variation of RH is required. In tribo couples with single phase SiC, either as ball or disc, the tribological behaviour of the system is dominated by SiC. The friction behaviour of the composite material is in between the behaviour of the two single phase materials, Si3N4 and SiC, whereas the wear behaviour is very similar to that of single phase Si3N4.  相似文献   

16.
《Wear》2002,252(7-8):662-667
The friction and wear properties of the ionic ceramics Al2O3 and ZrO2, and the covalent ceramics Si3N4 and SiC rubbing against an Al2O3 ball in vacuum (10−5 Pa) and in CF3CH2F (HFC-134a) gas at 104 Pa were investigated using a ball-on-disk type tribometer. Without exposure to air, the surface composition and chemical state of the wear tracks and debris on the disks were determined with X-ray photoelectron spectroscopy (XPS). It is found that HFC-134a gas significantly reduces the friction and wear of all the ceramic couples, and that the ionic ceramic pairs show lower friction and wear. On the other hand, metal fluorides and/or fluorine-containing organic compounds are detected on the sliding surfaces. The differences in the friction–wear behavior of the ceramics rubbing in HFC-134a gas may be due to the products of tribochemical reactions, which are dependent on the bond type of the ceramics.  相似文献   

17.
Effect of running‐in process on friction behaviour of carbon nitride (CNx) coating in N2 gas stream was investigated with a newly introduced two‐step ball‐on‐disk friction test, where the rubbed Si3N4 ball in the pre‐sliding (step 1) was replaced by a new CNx‐coated Si3N4 ball in the subsequent sliding stage under N2 gas (step 2). The two‐step friction test is clarified to be a simple but effective technique for obtaining contact material combination of self‐mated CNx coatings and for achieving stable and low frictions of CNx coatings. Friction coefficients of CNx/CNx in N2 gas stream decrease greatly from 0.07 without pre‐sliding to less than 0.025 in two‐step friction tests. The minimum friction coefficient of 0.004 was obtained by introducing 500 cycles of pre‐sliding in ambient air. These stable and low frictions are attributed to the generation of self‐mated CNx coatings and the formation of a lubricious layer on the disk surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Lin  Xinhua  Zeng  Yi  Ding  Chuanxian  Zheng  Pingyu 《Tribology Letters》2004,17(1):19-26
Nanostructured and conventional Al2O3-3 wt% TiO2 coatings were deposited by atmospheric plasma spraying. The wear and friction properties of both coatings against a steel ball under dry friction conditions were examined. It was found that the wear resistance of the nanostructured Al2O3-3 wt% TiO2 coating was superior to that of the corresponding conventional counterpart. The improvement in wear resistance of the nanostructured coating was attributed to its higher toughness and cohesion strength between splats. As for the nanostructured coating, the wear mechanism was mainly adhesion with micro-abrasion at low loads (20 N). At high loads (80 N), the wear of the nanostructured coating was controlled by plastic deformation and associated delamination along the splat boundaries, which was similar to that of the conventional coating at low loads. However, the failure of the conventional coating was predominantly brittle fracture within the splats and delamination between splats at high loads.  相似文献   

19.
Friction experiments were conducted on four kinds of ceramics (SiC, Si3N4, Al2O3 and ZrO2) against themselves in water under different contact pressures and sliding velocities. The variations of friction coefficients as a function of sliding distance, and the effects of mean contact pressure and sliding velocity on friction coefficients were shown. Friction coefficients lower than 0.03 were observed under a certain combination of mean contact pressure and sliding velocity for each material. The friction coefficient suddenly increased when the mean contact pressure was above a threshold value, which depended on both sliding velocity and the material of sliding pairs. SiC had a higher threshold value than the other three ceramics at every sliding velocity investigated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
This study consists of two stages. In the first stage, bronze-based break linings were produced and friction-wear properties of them were investigated. In the second stage, 0.5%, 1%, 2% and 4% alumina (Al2O3) powders were added to the bronze-based powders and Al2O3 reinforced bronze-based break linings were produced. Friction–wear properties of the Al2O3 reinforced samples were aslo investigated and compared to those of plain bronze-based ones. For this purpose, friction coefficient and wear behaviour of the samples were tested on the grey cast iron disc. The hardness and density of the samples were also determined. Microstructures of the samples before and after the sintering and the worn surfaces of the wear specimens were examined using a scanning electron microscope (SEM). The sample compacted at 350 MPa and sintered at 820 °C exhibited the optimum friction–wear behaviour. With increase in friction surface temperature, a reduction in the friction coefficient of the samples was observed. The lowest reduction in the friction coefficient with increasing temperature was for the 2% and 4% Al2O3 reinforced samples. The SEM images of the sample indicated that increase in Al2O3 content resulted in adhesive wear. With increase in Al2O3 content, a reduction in mass loss of the samples was also observed. Overall, the samples reinforced with 2% and 4% Al2O3 exhibited the best results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号