首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 609 毫秒
1.
超磁致伸缩体内涡流效应有限元分析   总被引:10,自引:8,他引:10  
为补偿涡流效应产生的温度与反相磁场对超磁致伸缩微位移驱动体位移输出造成的非线性,从电磁场基本原理出发,推导了超磁致伸缩驱动器内的涡流分布和大小的数学模型。利用伽辽金加权余量法和牛顿-拉夫逊迭代法得到涡流效应数学模型的解析公式。通过解析公式分析超磁致伸缩驱动器内驱动体横截面上的电磁场分布,进而得到驱动体上各部分涡流大小及分布与输入电流频率增加的对应关系。当输入频率大于1 kHz时,涡流有限元模型计算得到的涡流导致磁场损耗量与实测磁场强度相差约4.6 mT,表明此模型可以对超磁致伸缩驱动体内的涡流损耗进行有效的补偿。  相似文献   

2.
磁致伸缩薄膜动态驱动特性的研究   总被引:1,自引:0,他引:1  
提出一种新的磁致伸缩薄膜动态驱动特性的研究方法,其原理是以磁致伸缩薄膜复合梁的等效形变为基础,将磁致伸缩驱动应力转换为等效驱动力矩,建立磁致伸缩薄膜的强迫振动动态模型,通过受迫振动理论来研究磁致伸缩薄膜的动态特性。对该模型进行了仿真计算和试验验证,表明该模型可以描述磁致伸缩薄膜的动态行为。该方法对薄膜驱动器的运动分析与结构优化。最终实现基于磁场自感知的超磁致伸缩薄膜驱动器的闭环控制具有参考意义。  相似文献   

3.
给出超磁致伸缩换能器驱动磁场均匀性概念后,论述了超磁致伸缩换能器驱动磁场宜用电磁感应强度表示。建立了ANSYS2D有限元模型,分析了超磁致伸缩棒、线圈长度、磁路闭合与否、补偿线圈等对磁场均匀性的影响,得出了明确的结论。该分析结果已经用于指导超磁致伸缩换能器的设计,取得良好的效果。  相似文献   

4.
在液压阀工作空间环境限制的条件下,设计了一种体积精小、结构紧凑的阀用超磁致伸缩致动器。针对该种致动器内部偏置磁场强度均匀性较差的问题,利用有限元仿真方法对其偏置磁场分布结构进行了分析及设计,通过引入磁场不均匀度及平均磁场强度两性能指标对偏置磁场分布结构进行区别,同时结合实际情况,确定了最佳偏磁分布结构为超磁致伸缩棒段数n=3时;制作了阀用超磁致伸缩致动器试验样机,并对样机磁场强度进行了测试。实验结果表明,超磁致伸缩棒表面的磁场分布与仿真结果具有相同的变化趋势,其磁场不均匀度约为22.7%,说明所设计偏置磁场结构是合理的,该研究对于液压阀件的设计具有一定意义。  相似文献   

5.
超磁致伸缩泵驱动磁路建模及数值分析   总被引:1,自引:0,他引:1  
提出了一种面向固液混合作动器的新型超磁致伸缩泵结构。对超磁致伸缩泵驱动磁路进行了数学建模,采用有限元法对其磁场分布进行了数值模拟,并与理论计算结果进行对比,发现超磁致伸缩棒上磁感应强度的理论计算值与仿真结果基本吻合。采用磁场有限元法分析了超磁致伸缩棒的轴向磁场与径向磁场均匀性,发现径向磁场均匀性明显高于轴向;针对不同长度的棒进行了轴向磁场均匀性分析,揭示了其影响与作用规律;在此基础上对驱动磁场进行了动态数值模拟,发现在输入电压恒定时超磁致伸缩棒内的磁感应强度随着输入信号频率的提高而衰减,实验与仿真结果的对比验证了仿真的正确性。  相似文献   

6.
为了充分发挥超磁致伸缩驱动器的特性,提高超磁致伸缩驱动器驱动磁场的性能,通过采用电流励磁法,建立基于磁感应强度为控制变量的单层空心线圈、多层空心线圈和带超磁致伸缩棒的多层线圈的轴线磁感应强度数学模型,分析超磁致伸缩棒、线圈长度和线圈半径对驱动磁场的均匀性和驱动磁场大小的影响.仿真结果表明,减小超磁致伸缩棒与驱动线圈之间的气隙,能提高驱动磁场的线性度;在满足设计要求的范围内,增加线圈长度,减小线圈半径,能够提高驱动磁场均匀性;仿真结果对超磁致伸缩驱动器驱动磁场的设计提供了一定的理论依据.  相似文献   

7.
提出了超磁致伸缩棒内部平均磁场计算方法,结合动态J-A模型以及线圈阻抗公式得到了超磁致伸缩致动器的能耗特性。分析了超磁致伸缩棒能耗、线圈能耗以及超磁致伸缩致动器总能耗随频率的变化趋势。分析结果表明,超磁致伸缩棒以及线圈能耗均随着频率的增大而增大,而且超磁致伸缩棒能耗占超磁致伸缩致动器总能耗的比例会随着频率的增大而增大。计算了油冷条件下超磁致伸缩棒的表面温度,计算结果与实验结果较为吻合,证明了能耗模型的正确性。分析过程及方法为超磁致伸缩致动器的设计和控制提供了有益的参考。  相似文献   

8.
超磁致伸缩薄膜悬臂梁的非线性变形分析及试验   总被引:2,自引:0,他引:2  
将双层超磁致伸缩薄膜(Giant magnetostrictive thin film,GMF)悬臂梁的磁致伸缩作用等效为分布弯矩作用,以简化磁机耦合模型。在几何非线性弹性变形理论基础上,根据哈密顿原理推导出超磁致伸缩薄膜非线性变形的控制方程,并给出超磁致伸缩薄膜悬臂梁静态几何非线性变形模型、非线性主共振和超谐波共振响应模型。采用悬臂梁式超磁致伸缩双层膜(铽镝铁—聚酰亚胺—钐铁)进行变形特性的试验研究,发现超磁致伸缩双层膜表现出明显的几何非线性变形特征,悬臂梁端部位移量约为厚度的2/3;同时检测到悬臂梁的超谐波共振现象,前三阶超谐波共振的驱动效率与一阶主共振的驱动效率具有可比性。将所提出的静态非线性变形模型和振动响应模型分别与试验结果对比发现,两个模型可较好地说明双层超磁致伸缩薄膜的非线性变形特性,为有效地利用超磁致伸缩薄膜设计开发微驱动器和微传感器提供依据。  相似文献   

9.
超磁致伸缩材料动态涡流损耗模型及试验分析   总被引:3,自引:1,他引:3  
超磁致伸缩材料Terfenol-D以其大磁致伸缩系数、快速时间响应及高能量密度的特点较广泛应用于高频动态领域,如超声换能器及振动主动控制结构等。磁性材料在高频磁场驱动条件下会产生涡流损耗,工作频率越高,涡流损耗越大,导致超磁致伸缩器件的输出功率显著降低。通过分析影响涡流损耗大小的关键性因素涡流截止频率与集肤深度,得到有效抑制涡流损耗的方式包括降低材料的电导率以及采用叠堆结构材料。采用经典的基于麦克斯韦方程组的涡流损耗模型,分析高频条件下磁场在整体结构与叠堆结构内部的分布,并通过试验比较两种超磁致伸缩材料结构的涡流损耗对材料阻抗频谱曲线、振动幅度的影响。试验结果显示叠堆结构的超磁致伸缩材料能够大幅度地抑制涡流损耗,其模型与试验结果相吻合。  相似文献   

10.
分析了微机械变形镜MEMS驱动器的种类及其特点,并在磁致伸缩薄膜具有低磁场下的大形变、低功耗、高响应速度等特性基础上,提出了超磁致伸缩薄膜MEMS驱动器的原理.由于TbFe磁致伸缩薄膜在外加磁场作用下,微桥将在水平方向上产生伸长变形,从而引起微桥在垂直方向上发生位移.根据这一原理,设计了一种用于微机械变形镜MEMS驱动器的超磁致伸缩薄膜驱动结构,同时提出制作磁致伸缩薄膜连续式微机械变形镜的工艺流程.  相似文献   

11.
在建立超磁致伸缩换能器轴对称模型的基础上,对在磁-机耦合场作用下Terfenol—D棒的径向应力、应变进行有限元分析,为超磁致伸缩换能器的深入研究提供了依据。  相似文献   

12.
为优化超磁致伸缩换能器的工作性能、提高输出振幅,基于预应力对磁致伸缩效应的作用机理,建立了饱和磁致伸缩系数与预应力的关系模型。提出磁致伸缩灵敏度的概念,建立其与预应力和外磁场强度之间关系的理论模型。以超声换能器输出振幅最大为目标,提出以磁致伸缩平均灵敏度最大为准则的最佳预应力值确定方法。实验结果表明:随着预应力的增大,磁致伸缩平均灵敏度存在极大值,该预应力可在一定驱动磁场强度下获得最大的超声振幅,由此验证了磁致伸缩灵敏度模型的正确性和最佳预应力确定方法的可行性。提出的最佳预应力模型对超磁致伸缩换能器设计中预应力的选择具有指导意义,有助于大振幅超磁致伸缩换能器的设计及应用。  相似文献   

13.
根据仿生学原理,采用超磁致伸缩薄膜驱动器模仿鱼类的波状推进方式,可以实现机器人的无缆驱动,并能显著提高机器人的可靠性与实用性。为了提高推进力,进而提高驱动效率,实现机器人尾鳍形状优化是关键。基于等面积条件,优选了几种薄膜尾鳍形状,在建立悬臂梁结构变断面超磁致伸缩薄膜受迫振动动态模型和机器人推力模型的基础上,对不同形状薄膜尾鳍的推力进行了仿真验证,得出了最佳尾鳍形状曲线,并用有限元法分析了薄膜驱动器的应力分布,最后通过试验验证了薄膜驱动器的推进效果。  相似文献   

14.
扫描电子束钎焊温度场数值分析   总被引:2,自引:1,他引:2  
根据不锈钢毛细管板结构的钎焊特点,建立了扫描电子束钎焊温度场三维有限元分析模型。有限元计算结果与试验结果一致,证明所建立的温度场模型是合理的。利用该模型预测了束斑直径、扫描半径和束流三个工艺参数对扫描电子束钎焊温度场的影响。结果表明:大束斑直径、大扫描半径和小束流的扫描方式可以获得钎焊所需的局部均匀的温度场。利用有限元分析得到的优化工艺参数对毛细管板结构件进行了扫描电子束钎焊试验,获得了良好的钎焊接头。  相似文献   

15.
针对普通谐波齿轮传动需由电机经波发生器输入运动和动力,空间利用率低、惯性大、高速响应差的问题,提出一种由超磁致伸缩材料驱动的有源谐波电机。致动器作为谐波电机动力源及换能装置,对其磁场强度、均匀性、漏磁及空间限制等均有严格要求,据此提出分段内置式永磁结构布局,充分利用空间并改善均匀性;通过对偏置磁场和驱动磁场强度及均匀性影响因素研究,优化致动器参数;随后利用有限元法建立致动器模型并对磁场特性仿真分析;根据优化结构研制出超磁致伸缩谐波电机致动器样机,并对其输出特性试验研究。理论分析与试验结果表明,分段内置式永磁结构漏磁极小,所提出的设计理论和方法,保证了磁场强度和均匀性的同时也保证了致动器工作在准线性范围内,输出规律符合啮合要求,易于实现精准控制,为超磁致伸缩谐波电机走向实际应用奠定了基础。  相似文献   

16.
为了充分发挥超磁致伸缩材料的性能,提高超磁致伸缩驱动器的输出特性,提出了一种双相对置超磁致伸缩新型驱动器,介绍了新型驱动的结构组成与工作原理.在建立双相对置超磁致伸缩驱动器轴对称模型基础上,利用有限元法对驱动器的磁场分布进行了分析,并通过数值积分方法计算在不同励磁电流激励下超磁致伸缩棒的伸长量,并最终计算出驱动器的输出位移,根据计算结果对驱动器的线性工作范围做出了有效的估计.结果表明,新型驱动器具有更好的输出线性度和更大的输出位移.  相似文献   

17.
Due to the influence of magnetic hysteresis and energy loss inherent in giant magnetostrictive materials (GMM), output displacement accuracy of giant magnetostrictive actuator (GMA) can not meet the precision and ultra precision machining. Using a GMM rod as the core driving element, a GMA which may be used in the field of precision and ultra precision drive engineering is designed through modular design method. Based on the Armstrong theory and elastic Gibbs free energy theory, a nonlinear magnetostriction model which considers magnetic hysteresis and energy loss characteristics is established. Moreover, the mechanical system differential equation model for GMA is established by utilizing D’Alembert’s principle. Experimental results show that the model can preferably predict magnetization property, magnetic potential orientation, energy loss for GMM. It is also able to describe magnetostrictive elongation and output displacement of GMA. Research results will provide a theoretical basis for solving the dynamic magnetic hysteresis, energy loss and working precision for GMA fundamentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号