首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progress has been made recently in visualizing the structures and organelles responsible for endocytic membrane traffic from the cell surface to the lysosome-like vacuole in Saccharomyces cerevisiae. This, together with the recent discovery of several new membrane trafficking pathways connecting these organelles, has led to a quantum leap in our understanding of the S. cerevisiae endocytic pathway. We now know that although the cortical actin cytoskeleton is required for the internalization step of endocytosis, the internalization event occurs at furrow-like invaginations of the plasma membrane, which are distinct from cortical actin patches. Internalized material is taken into the cell in the form of small (30-50 nm diameter) vesicles and delivered to tubulo-vesicular early endosomes at the cell periphery. Subsequently, the internalized material arrives in multivesicular late endosomes adjacent to the vacuole. Recent microscopy evidence suggests that transfer from late endosomes to the vacuole may involve direct fusion of late endosomes with the vacuole. The visualization of the S. cerevisiae endocytic pathway has revealed similarities to endocytic pathways visualized in higher eukaryotes.  相似文献   

2.
Uptake of microorganisms by eukaryotic cells depends on proper functioning of the actin machinery. It creates a driving force for the cell membrane deformations necessary for ingestion and killing of microbes by phagocytes. Therefore, specific alterations in the activity of the actin apparatus could be favorable for pathogenic bacteria, representing an efficient mechanism in their virulence. Such alterations are supposed to be achieved in two principle ways. One is accomplished via binding of bacterial ligands to certain surface receptors, which initiate subsequent actin cytoskeleton rearrangements. Another is to introduce cytoskeleton-targeted products directly into eukaryotic cells and in this way modulate the activity of the actin apparatus. Indeed, Legionella and some other intracellular parasites possess ligands able to stimulate certain receptors on the surface of phagocytes and possess devices suitable for translocation of effector molecules into eukaryotic cytoplasm. The results of such events could be increased uptake of these microbes and their subsequent transportation to permit multiplication in their intracellular niche. On the contrary, representatives of Clostridium and a number of other extracellular pathogens create products which penetrate eukaryotic cells and disorganize the actin cytoskeleton network, thus making uptake of these pathogens by phagocytes impossible.  相似文献   

3.
4.
In order to demonstrate the power of quantitative microscopy, the endocytic apparatus of rat hepatocytes was reexamined using in situ liver and short term cultured hepatocyte couplets that were allowed to internalize endocytic markers for various time intervals. Correlative confocal light and electron microscopy demonstrate a tubulovesicular reticulum representing the endocytic apparatus. Volume and membrane area account for 2% of cell volume and 30% plasma membrane surface. Colocalization analysis demonstrated that pathway-specific ligands and fluid-phase markers enter EEA1-positive vesicles, the early endosomal compartment, immediately after internalization. These vesicles are translocated rapidly from basolateral to perinuclear and apical locations. Ligands are sorted within 5 min to their respective pathways. Sequential colocalization of an asialoglycoprotein-pulse with rab7 and lamp3 demonstrates that early endosomes change into or fuse with late endosomes and lysosomes. Alternatively, markers are sequestered into the common endosome consisting of rab11-positive, long tubules that originate from early endosomes and show an affinity for the transcytotic marker pIgA and its receptor. This compartment mediates transcytosis by delivering the receptor-ligand complex to the subapical compartment, a set of apical, rab11-positive vesicles, which are connected to the tubular reticulum. We conclude that vesicular traffic between preexisting compartments, maturation or fusion of endocytic organelles, and transport in tubules act in concert and together mediate transport between compartments of a tubulovesicular endocytic apparatus. In addition, we show that quantitative microscopy using high resolution data sets can detect and characterize kinetics of various parameters thus adding a dynamic component to 3D information.  相似文献   

5.
Recent advances in rapid freezing and fixation by freeze substitution have allowed structural cell biologists to apply these reliable modes of sample preparation to a wide range of specimens and scientific problems. Progress in electron tomography has produced cellular images with resolution approaching 4 nm in 3D, but our ability to localize macromolecules in these well‐fixed, well‐resolved samples has remained limited. When light fixation and low temperature embedding are employed with appropriate resins, immuno‐localizations can recognize antigens at a section's surface, but labelling is therefore confined, not throughout the section's depth. Small, electron‐dense markers, like Nanogold®, will often enter a living cell, serving as reliable tracers for endocytic activity, but these markers are usually too small to be visible in the context of a cell. We have developed a method for the silver enhancement of Nanogold particles that works during freeze substitution in organic solvents at low temperature. Here, we describe the development of this method, based on in vitro tests of reagents and conditions. We then show results from application of the method to an in vivo system, using Nanogold to track the internalization of immunoglobulin by neonatal murine intestinal epithelium, a specific example of receptor‐mediated membrane traffic.  相似文献   

6.
Actin cytoskeleton organization in response to integrin-mediated adhesion.   总被引:9,自引:0,他引:9  
Cell matrix adhesion regulates actin cytoskeleton organization through distinct steps, from formation of filopodia and lamellipodia in the early phases of cell adhesion to organization of focal adhesions and stress fibers in fully adherent cells. In this review, we follow the events induced by integrin-mediated adhesion, such as activation of GTPases Cdc42 and Rac and their effectors and their role in actin polymerization leading to formation of lamellipodia and filopodia and cell spreading. We also show that actin stress fiber and focal adhesion formation following adhesion requires cooperation between integrin-mediated signaling and additional stimuli, including activation of PKC, Rho GTPases, and PTKs such as p125Fak and Src.  相似文献   

7.
Candida albicans is considered the main pathogenic yeast responsible for a multitude of infective disorders. However, other yeasts, such as Candida famata, are being recognized as potential emerging pathogens that cause several types of infections in humans and animals. Consequently, we have investigated the adhesion and internalization of Candida famata into monocytes and epithelial cells. The interaction of the yeast with the cells is very rapid and takes place during the first 15 min of injection. However, the affinity of the yeast for the cells varies, THP-1 (human monocytes) being the highest and followed in decreasing order by HeLa (human carcinoma), HaCaT, and Pam-212 (human and mouse keratinocytes, respectively). Heat inactivation or treatment with nystatin, significantly decreases yeast adhesion to cells. Immunofluorescence, as well as scanning and transmission electron microscopy, reveals that cell lines are able to internalize C. famata. At 48 h after infection, most of the yeasts located inside cells appear degraded, but some yeasts recovered from lysed cells, were still viable. Adhesion and internalization of C. famata into HeLa cells were found to be lower than those of C. albicans and C. glabrata, but higher than those of S. cerevisiae. In addition, infection with C. famata results in actin microfilaments rearrangement. This article presents novel data in the interaction of this pathogenic yeast with mammalian cells.  相似文献   

8.
In vitro interaction of Entamoeba histolytica trophozoites with fibronectin (FN) induces redistribution of the amoebic fibronectin receptor (β1EhFNR). Trafficking of beta1 integrins is important for cell adhesion and migration in higher eukaryotes and requires the participation of Rab proteins. In E. histolytica, the machinery involved in integrin trafficking is not completely known. EhRab7 is a 24.5-kDa protein whose alignment with other Rab7 proteins demonstrated that it shared significant homology with Rab7 proteins from other organisms, including humans. Using different types of microscopy (fluorescence and confocal microscopy), it was established that Rab7 and the actin cytoskeleton participated in the mobilization of β1EhFNR in FN-stimulated trophozoites. β1EhFNR and Rab7 co-localized only in vesicular structures at 5 min, and at longer time (1 h), both co-localized in both plasma membrane and in vesicular structures; at the same time, Rab7 co-localized with specific actin structures (phagocytic vacuoles). At 5 h the β1EhFNR, Rab7, and actin co-localized at the plasma membrane, and only β1EhFNR and Rab7 decorated vesicles of different sizes. Actin and Rab7 co-localized in a cap-like structure at one end of the cell. Fluorescence resonance energy transfer and electron microscopy confirmed the close interaction between β1EhFNR and Rab7. Moreover, the use of a lysosome-specific marker (LysoTracker) and a Golgi-specific marker (NBD C(6)-ceramide) allowed us to establish that, at some point within the endocytic route, β1EhFNR and Rab7 co-localized within a lysosome-type organelle, but not a Golgi-like organelle, which indicated that this integrin-like molecule was returned to the plasma membrane via exocytic or secretory vesicles.  相似文献   

9.
The actin cytoskeleton is a main component of cells and it is crucially involved in many physiological processes, e.g. cell motility. Changes in the actin organization can be effected by diseases or vice versa. Due to the nonuniform pattern, it is difficult to quantify reasonable features of the actin cytoskeleton for a significantly high cell number. Here, we present an approach capable to fully segment and analyse the actin cytoskeleton of 2D fluorescence microscopic images with a special focus on stress fibres. The extracted feature data include length, width, orientation and intensity distributions of all traced stress fibres. Our approach combines morphological image processing techniques and a trace algorithm in an iterative manner, classifying the segmentation result with respect to the width of the stress fibres and in nonfibre‐like actin. This approach enables us to capture experimentally induced processes like the condensation or the collapse of the actin cytoskeleton. We successfully applied the algorithm to F‐actin images of cells that were treated with the actin polymerization inhibitor latrunculin A. Furthermore, we verified the robustness of our algorithm by a sensitivity analysis of the parameters, and we benchmarked our algorithm against established methods. In summary, we present a new approach to segment actin stress fibres over time to monitor condensation or collapse processes.  相似文献   

10.
We have used a direct in vivo imaging strategy to investigate the role of c‐Met signalling and kinase activity during the immune response to wounding. Our assay utilizes the optical translucent properties of the zebrafish embryo and demonstrates the versatility of microscopy‐based approach to the screening of compounds for inhibition of the wounding response. We have focussed on the c‐Met pathway as little is known about the influence of c‐Met signalling in immune responses, although it has been suggested that the c‐Met tyrosine kinase receptor signalling pathway may be involved in cytokine secretion and directional migration in immune cells. Using both imaging of fixed zebrafish embryos in combination with digital time lapse microscopy of neutrophils recruited to a wound site, we find that pharmacological inhibition of c‐Met, using a specific inhibitor, modulates the immune response in zebrafish embryos. We have found that inhibition of c‐Met does not prevent the inflammatory response but does appear to limit recruitment and retention of immune cells at the wound site. This work demonstrates the versatility of using direct imaging assays for inhibitor studies and suggests that the HGF/c‐Met signalling cascade plays an important role in the migration of haematopoietic cells in vivo.  相似文献   

11.
Liu BY  Zhang GM  Li XL  Chen H 《Scanning》2012,34(1):6-11
Atomic force microscopy (AFM) is a promising microscopy technique that can provide high-resolution images of bacterial cells without fixation. Three species of bacteria, Xanthomonas campestris, Pseudomonas syringae, and Bacillus subtilis, were used in this study. AFM images were obtained from unfixed and glutaraldehyde-fixed cells, and cell height was measured. The mean height of bacterial cells prepared by fixation was higher than that of those prepared by nonfixation. However, the height changes were different between Gram-negative and Gram-positive bacteria: the mean height of two fixed Gram-negative bacteria, X. campestris and P. syringae, increased by 112.31 and 84.08%, respectively, whereas Gram-positive bacterium, B. subtilis, increased only by 38.79%. The results above indicated that glutaraldehyde fixation could affect the measured height of cells imaged by AFM; further more, the effect of glutaraldehyde fixation on the measured height of Gram-negative bacterial cells imaged by AFM seemed much more than on that of Gram-positive bacterial cells.  相似文献   

12.
Antibacterial resistance developed by bacteria due to the unlimited use of antibiotics has posed a challenge for human civilization. This kind of problem is not limited to India only, but it is a global concern. Nowadays, many treatments and medicines for bacterial diseases have been developed. However, they possess some drawbacks. Therefore, the alternative medicine has been used to target the drug resistant mechanisms and such medicines have less side effects which is becoming necessary. Natural products have traditionally or historically been of importance for the development of antibacterial agents and are also known to overcome bacterial drug resistance by directly targeting the drug resistance mechanisms in bacteria. In recent years, researchers have also focused on new drug discovery from plant-based research. They have looked on various phytocompounds as antibacterial agents. In the current review, we report various classes of secondary metabolites such as phenolic compounds, flavonoids, alkaloids, saponins, terpenes, quinones, and some essential oils that have been used as an antibacterial agent. In addition, we also discuss several mechanisms behind bacterial multi-drug resistance that are used during bacterial pathogenesis.  相似文献   

13.
Visualization of bacteria in living plant cells and tissues is often problematic due to lack of stains that pass through living plant cell membranes and selectively stain bacterial cells. In this article, we report the use of 3,3′‐diaminobenzidine tetrachloride (DAB) to stain hydrogen peroxide associated with bacterial invasion of eukaryotic cells. Tissues were counterstained with aniline blue/lactophenol to stain protein in bacterial cells. Using this staining method to visualize intracellular bacterial (Burkholderia gladioli) colonization of seedling roots of switch grass (Panicum virgatum), we compared bacterial free seedling roots and those inoculated with the bacterium. To further assess application of the technique in multiple species of vascular plants, we examined vascular plants for seedling root colonization by naturally occurring seed‐transmitted bacteria. Colonization by bacteria was only observed to occur within epidermal (including root hairs) and cortical cells of root tissues, suggesting that bacteria may not be penetrating deeply into root tissues. DAB/peroxidase with counter stain aniline blue/lactophenol was effective in penetration of root cells to selectively stain bacteria. Furthermore, this stain combination permitted the visualization of the bacterial lysis process. Before any evidence of H2O2 staining, intracellular bacteria were seen to stain blue for protein content with aniline blue/lactophenol. After H2O2 staining became evident, bacteria were often swollen, without internal staining by aniline blue/lactophenol; this suggests loss of protein content. This staining method was effective for seedling root tissues; however, it was not effective at staining bacteria in shoot tissues due to poor penetration. Microsc. Res. Tech. 77:566–573, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
董萌 《工程机械与维修》2012,(10):112-113,22
与汽车产品相比,重型机械产品是投入和利润回报双高的产品种类,而在这个领域中,我国部分企业已经具有相当的领先优势。选择在市场低位运行期,进入高投入且强手如林的重型机械行业,福田汽车除了胆量,还有什么?  相似文献   

15.
Coccoid cells of the bacterial species Staphylococcus aureus have been mechanically trapped in lithographically patterned substrates and imaged under growth media using atomic force microscopy (AFM) in order to follow cellular processes. The cells are not perturbed as there is no chemical linkage to the surface. Confinement effects are minimized compared to trapping the cells in porous membranes or soft gels. S. aureus cells have been imaged undergoing cell division whilst trapped in the patterned substrates. Entrapment in lithographically patterned substrates provides a novel way for anchoring bacterial cells so that the AFM tip will not push the cells off during imaging, whilst allowing the bacteria to continue with cellular processes.  相似文献   

16.
Atomic force microscopy (AFM) holds great potential for studying the nanoscale surface structures of living cells, and to measure their interactions with abiotic surfaces, other cells, or specific biomolecules. However, the application of AFM in microbiology is challenging due to the difficulty of immobilising bacterial cells to a flat surface without changing the cell surface properties or cell viability. We have performed an extensive and thorough study of how to functionalise surfaces in order to immobilise living bacteria for AFM studies in liquid environments. Our aim was to develop a scheme which allows bacterial cells to be immobilised to a flat surface with sufficient strength to avoid detachment during the AFM scanning, and without affecting cell surface chemistry, structure, and viability. We compare and evaluate published methods, and present a new, reproducible, and generally applicable scheme for immobilising bacteria cells for an AFM imaging.  相似文献   

17.
气孔免疫的研究和利用:农业分子生态新热点   总被引:1,自引:0,他引:1  
叶际微生物的定居、组成及其对宿主植物的益生和拮抗作用受到越来越多的关注。气孔不再被认为是微生物侵入植物的被动通道,而是植物先天免疫的一个重要组成部分,对植物气孔与微生物的免疫互作的分子机制研究也越来越详尽。本文综述了叶际微生物与植物的免疫互作机制,结合环境因素影响的气孔开闭振荡及其对作物的水分利用效率的影响研究,提出可利用植物气孔免疫过程中的气孔振荡行为来发展农业节水增产技术的观点。植物气孔一微生物免疫互作将成为分子生态与农业生态的交叉点和新焦点。  相似文献   

18.
目的:探测阿莫西林作用于沙门氏菌(G)和单核增生性李斯特菌(G~+)后2种菌体的形貌和生物力学特性的变化,探讨阿莫西林的抗菌活性和抗菌机理。方法:通过平板菌落计数法测细菌的失活率,利用原子力显微镜(AFM)对药物作用后细菌的表面形貌及细胞的硬度、粘附力做定性和定量分析。结果:平板菌落计数得,25μg/mL的阿莫西林作用1h后,沙门氏菌的失活率较李斯特菌的失活率大。AFM测量显示,与低浓度阿莫西林作用后,沙门细菌表面出现孔洞,而李斯特菌表面出现裂缝,力曲线测量显示,药物作用后针尖和细胞壁之间的粘附力明显增加,而杨氏模量(E)显著降低。结论:结合AFM图像可知形貌与生物力学特性的变化反映细胞壁的变化,细胞壁的成分由均一性变为异质性从而导致细菌的粘附力增加即F_(native)E_(amoxicillin)通过以上分析进一步探讨阿莫西林的杀菌机理和不同的细菌对阿莫西林的敏感程度。这些AFM数据为阿莫西林的临床应用提供可视化的数据支持。  相似文献   

19.
The plant actin cytoskeleton is characterized by a high diversity in regard to gene families, isoforms, and degree of polymerization. In addition to the most abundant F-actin assemblies like filaments and their bundles, G-actin obviously assembles in the form of actin oligomers composed of a few actin molecules which can be extensively cross-linked into complex dynamic meshworks. The role of the actomyosin complex as a force generating system - based on principles operating as in muscle cells - is clearly established for long-range mass transport in large algal cells and specialized cell types of higher plants. Extended F-actin networks, mainly composed of F-actin bundles, are the structural basis for this cytoplasmic streaming of high velocities On the other hand, evidence is accumulating that delicate meshworks built of short F-actin oligomers are critical for events occurring at the plasma membrane, e.g., actin interventions into activities of ion channels and hormone carriers, signaling pathways based on phospholipids, and exo- and endocytotic processes. These unique F-actin arrays, constructed by polymerization-depolymerization processes propelled via synergistic actions of actin-binding proteins such as profilin and actin depolymerizing factor (ADF)/cofilin are supposed to be engaged in diverse aspects of plant morphogenesis. Finally, rapid rearrangements of F-actin meshworks interconnecting endocellular membranes turn out to be especially important for perception-signaling purposes of plant cells, e.g., in association with guard cell movements, mechano- and gravity-sensing, plant host-pathogen interactions, and wound-healing.  相似文献   

20.
机械装备正在朝着高速、高精、高效方向发展,为了确保这些装备的健康运行,健康监测系统采集了海量数据来反映机械的健康状况,促使机械健康监测领域进入了“大数据”时代。机械大数据具有大容量、多样性与高速率的特点,研究和利用先进的理论与方法,从机械装备大数据中挖掘信息,高效、准确地识别装备的健康状况,成为机械装备健康监测领域面临的新问题。深度学习理论作为模式识别和机器学习领域最新的研究成果,以强大的建模和表征能力在图像和语音处理等领域的大数据处理方面取得了丰硕的成果。结合机械大数据的特点与深度学习的优势,提出了一种新的机械装备健康监测方法。该方法通过深度学习利用机械频域信号训练深度神经网络,其优势在于能够摆脱对大量信号处理技术与诊断经验的依赖,完成故障特征的自适应提取与健康状况的智能诊断,因此克服了传统智能诊断方法的两大缺陷:需要掌握大量的信号处理技术结合丰富的工程实践经验来提取故障特征;使用浅层模型难以表征大数据情况下信号与健康状况之间复杂的映射关系。试验结果表明,该方法实现了多种工况、大量样本下多级齿轮传动系统不同故障位置不同故障类型的故障特征自适应提取与健康状况准确识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号