首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对齿轮重复加工中由于误差引起齿轮轮廓精度难以保证的问题,对影响齿轮重复加工的跟踪误差、耦合误差等因素进行了研究。结合齿轮重复加工的应用需求,对耦合误差的构成和耦合误差对轮廓精度的决定性影响,及相关误差补偿方法进行了分析,提出了通过实时相位误差反馈来对耦合误差进行实时补偿的齿轮加工控制系统模型;开发了一种新的相位误差动态闭环补偿技术;利用齿轮加工系统试验平台,对相位误差动态补偿技术的有效性进行了测试;通过MATLAB数据仿真和实际工件切削,对采用相位误差补偿技术前后的相位误差变化进行了比较与分析。研究结果表明:该相位误差动态闭环补偿技术能有效地减少耦合联动轴的相位误差,相位误差下降达99%,明显提高了齿轮重复加工的精度;同时,该技术满足实时性要求,适合实际工程的应用。  相似文献   

2.
莫尔条纹信号相位误差补偿   总被引:10,自引:2,他引:8  
为减小莫尔条纹信号不正交时的正切法细分误差,提出了一种可对任意相位滞后误差进行实时补偿的新算法.在分析了相位不正交对细分精度的影响后,通过对信号过零点的准确采样,计算出余弦信号相位滞后的角度值,进而确定了实际的相位计算公式.根据存在相位滞后信号的极性和幅值信息,对完整的短周期信号进行相位分段补偿,并分析了影响算法实现的各个因素.仿真实验表明,本算法可实现对相位滞后误差的实时补偿,有效降低信号相位不正交对细分精度的影响,使细分误差仅为未补偿误差的10%,极大地提高了莫尔条纹信号细分精度和位移检测精度.  相似文献   

3.
精密机床几何误差补偿技术及应用   总被引:6,自引:0,他引:6  
误差补偿技术是提高精密机床精度的有效途径,本文研究了影响精密机床精度的主要因素,重点分析了几何运动误差及热误差源的检测、建模和实时补偿技术。  相似文献   

4.
数控机床热变形误差研究及补偿应用   总被引:1,自引:0,他引:1  
热变形误差是影响机床加工精度的重要因素之一,通过误差补偿的方法可以提高机床的加工精度。研究了通过实时补偿热变形误差提高数控机床加工精度的方法,阐述了热误差的基本原理,介绍了热误差的测量方法。采用模糊聚类的方法来布置测温点,利用多元线形回归方法建立了机床热变形与温升之间的数学模型。在PLC补偿系统的作用下,在加工过程中对XH718数控机床进行实时补偿。实验结果表明补偿效果很好。  相似文献   

5.
针对高速无人机光电侦查平台的实时对地目标定位误差,研究了基于惯导信息的光电平台目标定位算法。利用目标定位数学模型和误差模型,分析了影响目标定位精度的因素,建立了参数误差对于定位精度影响的数学仿真模型。通过仿真分析确定了卫星导航信息的实时性是造成定位误差的主要因素,提出了通过修正卫星导航信息延时时间来解决了光电侦察平台实时目标定位误差问题。进行了飞行试验以验证提出论点的正确性,结果表明:通过修正卫星导航信息延时时间,有效补偿了载机坐标信息滞后,提高了光电侦察平台目标定位精度,定位误差由补偿前的100m减少到小于40m。研究结果对高速飞行器的相关应用具有重要的参考价值。  相似文献   

6.
运用间接测温方法,建立了油田射孔器材检测装置中的高温高压釜内介质温度预测模型,并对该模型的误差因素进行了分析,通过实时测量对模型进行了在线校验及温度补偿,使之在该装置的高精度温控系统中起到了良好的作用。  相似文献   

7.
《工具技术》2013,(9):59-62
通过对一种轴类零件自动检测仪传动系统的分析,对影响该检测仪检测精度的误差元素进行识别。对相应的运动副进行基座标系和局部坐标系标定。基于小误差补偿假设,用齐次坐标变换的方法建立了各相应运动副坐标系间分别在理想情况(无误差)下和实际情况(有误差)下的变换矩阵。根据多体系统运动学理论,分析了误差运动和补偿运动间的关系,并建立了该检测仪的综合误差补偿量计算模型,为该检测仪的误差实时补偿提供了理论基础。  相似文献   

8.
针对自主研发五轴数控机床进行空间圆弧误差的研究,建立了旋转轴和直线轴误差数学模型,依据该模型进行误差因素分析。采用球杆仪作为测量仪器,进行空间圆度的测量,并对建模的数学模型进行验证。分析误差项与误差因素之间的关系,针对反向越冲和伺服不匹配进行误差分析,基于五轴高端数控系统,指明了一种可以通用的机床误差项补偿方法。通过进行实验数据对比,验证该补偿方案效果良好。得出误差项间相互耦合的结论,并且发现调整误差项先后顺序会对总误差值产生影响。  相似文献   

9.
基于牛顿插值的批量轴类零件加工误差补偿   总被引:1,自引:0,他引:1  
为提高批量轴类零件加工精度及加工效率,通过分析批量轴类零件加工数据,得到加工误差分布规律;运用牛顿插值理论建立批量轴类零件加工误差数学模型:应用用户宏程序按工件序号及切削位置进行误差实时补偿.该误差补偿方法综合考虑切削力引起的误差、热误差、刀具磨损误差、机床几何误差、编程误差、检测调整误差等误差因素,全面分析各误差因素与误差分布规律的关系,避免了误差因素分析不全的影响.得出切削力是影响单件工件加工误差分布的主要因素,刀具磨损是影响批量轴类零件加工误差分布的主要因素,热误差是导致误差分布规律畸变的主要因素.实践表明,应用该误差补偿方法可使批量轴类零件最大加工误差由60μm降低到4μm,补偿了93.3%;减少在机检测调整时间,加工效率提高13%,有效提高批量轴类零件加工精度和加工效率.  相似文献   

10.
数控机床误差对制造加工精度的影响较大。在已知主轴伺服电机电流信号与切削力之间关系的基础上,运用支持向量机网络建立切削力误差模型。以此为基础,进行数控机床的切削力误差实时补偿,解决了切削力误差造成数控机床加工误差的问题。并通过加工实例对此补偿系统进行了有力验证。结果表明:所建立的切削力误差模型避免了传统切削力监测花费大、调试难及可靠性低等问题,且有较强的鲁棒性和较高的精度,切削力误差实时补偿系统使用方便且效果显著。  相似文献   

11.
为提高复杂曲面零件的数控机床原位检测精度,分析影响接触式检测系统精度的各项因素及其误差补偿方法。对检测系统的主要误差来源如机床几何误差、测头预行程误差和测头半径误差进行分析研究。在对数控机床的几何误差进行分析和建模的基础上,采用激光干涉仪进行三轴数控机床的单项误差测量和补偿;针对测头检测过程中存在的预行程误差,提出基于径向基函数(Radial basis function, RBF)的预行程误差预测方法,获得测头预行程误差分布图,并对检测系统进行实时预行程误差的补偿;提出改进的三角网格模型顶点法矢计算方法,有效进行三维测头的半径补偿。通过实例零件的加工精度原位检测试验及其与三坐标测量机CMM检验结果的比较,验证了原位检测方法的有效性。  相似文献   

12.
数控机床误差检测及其误差补偿技术研究   总被引:7,自引:0,他引:7  
使用Renishaw激光干涉仪和高精度位移传感器实现了机床线性定位误差和主轴热误差的测量。通过补偿机床螺距和丝杠间隙误差,实现了机床线性定位误差的补偿。同时,使用PMAC控制卡对数控系统的G代码指令进行了实时修改,实现了机床主轴热误差的实时补偿。分析补偿后的机床,发现机床的加工精度得到了很大提高,表明该补偿效果明显。  相似文献   

13.
曲轴非圆磨削运动中动态误差及补偿   总被引:7,自引:2,他引:5  
动态误差是影响曲轴非圆磨削加工精度的主要因素,动态误差补偿可实时修正磨削过程的各种误差,保证补加工工件的加工精度.通过分析曲轴非圆磨削过程中动态误差产生的原因,对非圆磨削中数控系统的伺服滞后误差进行了定量分析,并对以恒线速度为基础的运动模型进行了仿真计算,计算结果表明,伺服滞后误差严重影响加工精度,且数控系统的调整只能减少伺服滞后误差,不能消除伺服滞后误差.提出了采用神经网络预测曲轴非圆磨削过程的误差,并对补偿数据进行必要的延迟处理后进行相应的补偿,以解决在线测量的角度偏差.通过离线测量加工试验表明,采用径向基函数网络较好地解决了曲轴非圆磨削过程中的误差补偿.  相似文献   

14.
以多体系统理论为基础,根据数控插齿机运动的实际情况,在考虑了由于制造、安装、运动控制不精确以及其它原因引起的初始位置误差等因素后,对数控插齿机的插齿啮合进行了分析,推导出包含误差在内的工件齿面方程,为数控插齿机进行实时测量与补偿和进一步研究误差因素对齿轮加工的影响提供了一种较好的误差分析方法。  相似文献   

15.
数控成型磨齿机加工误差在线监测及补偿   总被引:3,自引:0,他引:3  
研究数控机床加工过程在线监测及加工误差分析与补偿方法的问题,提出用于数控成型磨齿机齿向误差在线监测及补偿方法。数控机床加工过程中,加工工件和刀具间的相对位置关系对机床加工精度具有重要影响。通过获取数控机床内置信号(光栅、编码器)可以得到这一重要信息。基于内置信号同步采集方法,利用齐次坐标变换原理对数控机床进给轴的内置信号进行变换分析,获得机床空间加工轨迹,从而实现机床加工误差的在线监测与评估。同时,通过分析加工过程中各进给轴的动态位置信息,可以确定影响加工误差的主要因素。基于分析结果,通过软件实时补偿原理,结合数控机床控制系统特点,对主要误差源进行在线补偿,从而达到提高加工精度的目的。采用该方法对一数控成型磨齿机加工过程齿向误差进行评估与补偿,与三坐标测量机检测结果对比表明该方法可以有效地获取加工误差形貌。根据基于分析结果进行补偿后,使该机床齿向误差明显降低,提高了机床的加工精度等级。  相似文献   

16.
在航天、军事、工业这些对器件的体积有着严格要求的领域,光电编码器不仅要求减小外径尺寸和重量,更要提高其测量精度。本文以光电编码器误差补偿方法为研究对象,基于后验误差拟合方法确定误差模型参数,从而实现对小型光电编码器的深度误差补偿。分析了影响光电编码器测角误差的主要因素,建立了长周期误差和短周期误差模型。然后,采用后验误差拟合算法实现了对误差模型参数的确定,提出误差补偿算法;最后,对某一小型光电编码器进行实验,验证了所提出误差补偿算法的性能。某型号光电编码器补偿前的精度为22.48″,补偿后的精度为5.82″。实验表明,采用后验误差补偿方法可以不考虑误差影响因素的大小,直接对编码器进行误差补偿,具有效率高、补偿准确等优点,极大地提高了批量生产时光电编码器产品的精度。  相似文献   

17.
通过对磨削加工过程中的误差信息进行综合分析,运用人工神经网络的基本方法,建立了基于神经网络理论的精密磨削加工误差补偿模型,并从结构和算法方面进行了详细阐述。给出了对磨削加工进行实时误差补偿的硬件实现方法,并通过样本的合理选择及系统的学习过程提高了该误差补偿系统的补偿能力。  相似文献   

18.
为研究数控机床热变形规律,实现数控机床误差在机实时补偿,进行数控机床主轴热变形理论及试验分析,结果表明,数控机床主轴热变形与主轴温变在距热源约1/3位置存在近似线性关系,即主轴热变形存在伪滞后现象,这一结果为数控机床测温点优化布置及热误差鲁棒建模提供理论依据。为验证机床热变形伪滞后现象,对VM850加工中心主轴热漂移误差在机实时检测并建模,通过自主研发数控机床误差在线实时补偿系统对主轴热漂移误差进行实时补偿,经补偿,机床主轴热漂移误差减少90%以上,有效提高了数控机床主轴精度。  相似文献   

19.
精密磨削加工的神经网络误差补偿技术   总被引:2,自引:0,他引:2  
通过对磨削加工过程中的误差信息进行综合分析,运用人工神经网络的基本方法,建立了基于神经网络理论的精密磨削加工误差补偿模型,并从结构和算法方面进行了详细阐述.给出了对磨削加工进行实时误差补偿的硬件实现方法,并通过样本的合理选择及系统的学习过程提高了该误差补偿系统的补偿能力.  相似文献   

20.
数控机床在提升国家制造业水平中有着至关重要的作用,提高数控机床定位精度是一个关键性的问题.针对半闭环控制的数控系统,提出了几何与热复合的定位误差建模与补偿方法.首先对丝杠螺母进行了热特性分析.然后采用了三次样条插值对静态定位误差建模;基于温度传感器实时温度数据,建立了热误差模型;将二者相结合,建立了几何与热复合的定位误差模型.最后在半闭环控制的立式加工中心上进行误差实时补偿试验,在测量工况下,补偿后数控机床的定位精度提高了85%以上,验证了半闭环控制系统几何与热复合的定位误差建模以及误差实时补偿的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号