首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 144 毫秒
1.
基于小轮磨齿修形的面齿轮接触性能分析   总被引:1,自引:0,他引:1  
提出了直齿面齿轮的碟形砂轮磨齿方法,根据磨齿加工原理,建立了碟形砂轮磨齿加工模型,利用磨齿加工过程中对小轮的双向修形来实现面齿轮副的啮合性能优化,推导了面齿轮齿面和小轮修形齿面方程。算例表明,对小轮磨齿加工参数和修形参数的调整,可使齿面接触迹线的位置和方向得到改善,从而降低面齿轮副对安装误差的敏感性,并得到抛物线传动误差,有效减小因安装误差引起的振动与噪声。  相似文献   

2.
齿廓方向修形的斜齿面齿轮啮合特性研究   总被引:7,自引:0,他引:7  
主要研究了修形面齿轮副传动的啮合特性.提出了一种沿齿廓方向抛物线修形的面齿轮齿面结构,对传统斜齿面齿轮和修形的斜齿面齿轮副的啮合进行了比较.计算机仿真表明,修形的斜齿面齿轮传动啮合性能明显改善,接触路径沿两齿面齿长方向分布,有效避免了边缘接触;啮合区域对安装误差较为敏感,特别是轴夹角误差的大小,对啮合印痕在齿面上分布的影响尤其明显,容易导致接触区域向面齿轮的大端和小端偏移.  相似文献   

3.
为了提高面齿轮的磨齿效率,采用不做齿向进给运动的大半径盘形砂轮磨齿得到的面齿轮具有近似齿面,然而该近似面齿轮与双向修形小轮的啮合性能不够理想.因此进一步通过啮合理论重新构造小轮齿面,并根据预设的啮合性能对该新构造的小轮齿面进行拓扑修形设计,以控制近似面齿轮传动的啮合性能.小轮的拓扑修形齿面采用盘形砂轮局部点共轭法磨齿加工,建立了小轮拓扑修形齿面与加工参数之间的线性方程.用实例说明了所提方法的应用,齿面接触分析结果与给定的啮合性能基本一致.  相似文献   

4.
《机械传动》2015,(5):46-49
建立了变位面齿轮的加工和啮合坐标系,推导了变位小轮和变位面齿轮的齿面方程,将变位小轮理论齿面与修形曲面叠加构造了精确的修形齿面,对齿面进行了仿真并可视化,并对变位面齿轮副中小轮双向修形后进行了齿面接触分析,计算了不同安装误差下的啮合轨迹和几何传动误差,算例表明,修形后获得了开口向下2阶抛物线几何传动误差,降低了接触印痕对安装误差的敏感性,变位面齿轮副传动啮合性能得到改善。  相似文献   

5.
基于面齿轮的碟形砂轮磨齿加工原理,建立了磨齿加工数学模型,分析了面齿轮齿面磨削误差产生的机理,并推导了考虑砂轮安装误差的面齿轮齿面方程,根据误差齿面计算了齿面啮合工作区法向误差平均值,确定了两类砂轮安装位置误差对面齿轮齿面加工误差影响的敏感方向,在此基础上分析了蝶形砂轮安装位置误差和齿面加工误差的内在联系,获得了砂轮安装位置误差对面齿轮齿面加工误差的影响规律,为面齿轮齿面加工误差反馈补偿提供理论依据。  相似文献   

6.
六轴数控蜗杆砂轮磨齿机磨削面齿轮的方法   总被引:2,自引:0,他引:2  
建立六轴数控圆柱齿轮蜗杆砂轮磨齿机磨削面齿轮的理论模型。提出以初始设计蜗杆砂轮轴截面齿形为基本参数,并考虑齿廓抛物线修形来设计金刚滚轮,再用于修整椭球式蜗杆砂轮的方法。利用双参数啮合方程建立了面齿轮磨齿加工的齿面方程。齿面磨削仿真及轮齿接触分析表明,直接以蜗杆砂轮轴截面齿形作为金刚滚轮齿廓来修整砂轮,所磨削得到的面齿轮齿面压力角偏小,且传动误差为不连续的上凹形曲线。当给滚轮以抛物线修形设计之后,所磨削的面齿轮齿面偏差基本为负值,传动误差曲线为良好的连续上凸式抛物线形。承载接触分析表明新的设计可以减轻齿顶边缘接触,减小冲击振动。数值算例表明,采用该方法磨削加工的面齿轮可以获得较高的精度和良好的啮合性能,并给出了试验验证。  相似文献   

7.
基于展成磨削过程中蜗杆砂轮与齿轮之间的运动关系,建立了修形斜齿轮与蜗杆砂轮之间磨削运动的坐标转换关系。利用啮合原理理论推导出被磨削齿轮齿面与蜗杆砂轮的接触条件,计算出蜗杆砂轮的理论廓形。在VERICUT中,建立了蜗杆砂轮修整的数控机床模型,对蜗杆砂轮的修整程序进行了验证仿真。在YK7250磨齿机上进行了修形斜齿轮的磨削试验,对蜗杆砂轮修整精度进行了检验。验证了蜗杆砂轮修整方法的正确性和可行性。  相似文献   

8.
锥齿轮磨齿工艺可以有效降低齿轮表面粗糙度,修正齿面曲率,矫正接触区域,从而改善啮合传动。磨齿前对砂轮的修形直接决定了磨齿后齿面的形貌。文中研究了弧齿锥齿轮砂轮修形的计算调整方法,建立了修形模型,给出了修形表面的数学方程及计算点处曲率计算公式,对实际磨齿加工中砂轮修形调整具有指导意义。  相似文献   

9.
提出了用不同产形面展成锥面包络环面蜗杆失配啮合传动的方法。用齿面接触分析法求解了失配啮合传动和齿面接触状态和运动精度。进行了相应的加工工艺试验和齿面啮合对检试验。理论计算和试验结果表明:该失配啮合传动可有效地降低包络环面蜗杆传动的啮合性能对制造误差的敏感性。  相似文献   

10.
砂轮磨削带齿向修形的斜齿轮时,砂轮与齿轮之间的接触线时刻发生变化,其附加运动会使齿向一面产生“修形扭曲”,为此,提出一种高精度建立齿向修形齿面的方法。根据齿向修形原理,推导出成形磨齿的实际接触线方程;通过改变中心距的值,沿齿向得到多组接触线,使用NURBS曲面拟合,得到齿向修形齿面;对影响齿面精度的主要因素齿廓偏差和螺旋线偏差进行分析并提出误差评价模型。以鼓形修形斜齿轮为例,介绍齿向修形齿面构造全过程。磨齿实验验证了模型的准确性以及齿向修形齿面构造的高精度性。  相似文献   

11.
TI 环面蜗杆砂轮磨齿原理   总被引:6,自引:1,他引:6  
根据空间交错轴齿轮啮合理论,对TI环面蜗杆砂轮磨齿原理进行了理论研究,推导出了基本方程,分析了磨削渐开线直、斜齿圆柱齿轮时的接触线分布规律,并得到了齿面上不存在啮合界限线的判定条件,经微机模拟接触过程,表明此方法是一种高效的齿面磨削方法。  相似文献   

12.
针对面齿轮硬齿面磨削加工中存在的困难,提出用蜗杆砂轮磨削的双参数法来磨削面齿轮。借助一个渐开线斜齿圆柱齿轮的刀具齿面推导出蜗杆砂轮齿面,由蜗杆砂轮齿面经双参数包络生成斜齿面齿轮齿面。确定了刀具轴与蜗杆砂轮轴夹角大小,分析了双参数包络的形成及包络过程,并用计算机形成了可视化结果,获得了理想的面齿轮齿面。  相似文献   

13.
为了降低承载传动误差波动产生的振动激励,提出了成形磨人字齿轮直线型对角修形优化设计。根据ISO对角修形定义,计算齿顶、齿根修形起始线在旋转投影面上的螺旋角,将修形曲线设计为直线型,给定最大修形量,确定对角修形的齿面方程。利用齿面接触分析和轮齿承载接触分析,以工作载荷下人字齿轮承载传动误差波动量最小为优化目标,采用遗传算法优化对角修形参数。确定以目标修形齿面法向偏差的平方和最小的目标函数,以螺旋角、模数、压力角为设计变量,采用遗传算法分别对齿顶和齿根修形区域进行逼近,从而实现对角修形的成形磨加工。结果表明,人字齿轮直线型对角修形可以将承载传动误差波动量降低到36.65%;采用三截面砂轮成形磨的理论误差控制在1μm以内,获得较高的齿面精度;试验人字齿小轮齿的检测结果控制在4级精度以内,并进行了齿轮副的滚检试验,从而验证该方法的有效性。  相似文献   

14.
作者们基于以下研究提出了精磨杆的螺旋蜗杆传动的计算机设计和分析方法。1.滚刀的理论螺线表面是用一维面生成的。2.蜗杆表面与滚刀螺线表面相比齿廓和轴向为凸面。3.蜗杆的双凸面可局部承受接触和获得给定范围的传动误差的预先设计的抛物线函数。蜗杆传动的计算机设计可以显示和避免蜗杆齿面形成奇异点和齿棱。模拟双凸面蜗杆和蜗轮齿面的啮合和接触来确定支接触轴线不对和传动误差的影响,开发和应用了数值的计算机程序。数值计算实例说明所提供的开发原理。  相似文献   

15.
Doono  M Litv.  FL 《传动技术(上海)》2001,15(4):20-27
作者们基于以下研究提出了精磨蜗杆的螺旋蜗杆传动的计算机设计和分析方法。1.滚刀的理论螺线表面是用一维面生成的。2.蜗杆表面与滚刀螺线表面相比齿廓和轴向为凸面。3.蜗杆的双凸面可局部承受接触和获得给定范围的传动误差的预先设计的抛物线函数。蜗杆传动的计算机设计可以显示和避免蜗杆齿面形成奇异点和齿棱。模拟双凸面蜗杆和蜗轮齿面的啮合和接触来确定支承接触轴线不对中和传动误差的影响。开发和应用数值解的计算机程序。数值计算实例说明所提供的开发原理。  相似文献   

16.
建立了变位非正交面齿轮的加工坐标系和啮合坐标系,推导了变位小轮及变位非正交面齿轮的齿面方程,计算得到了面齿轮数值齿面,分析了变位对非正交面齿轮齿宽的影响。在变位的基础上研究了对小轮进行齿向鼓形修形,而面齿轮不修形的修形方式。分别对未变位、变位、变位加小轮齿向修形的三种非正交面齿轮传动形式进行考虑安装误差的轮齿接触分析。研究表明:随着变位系数增大,非正交面齿轮最小内半径、最大外半径及极限齿宽均减小;变位不影响非正交面齿轮副的接触规律;小轮齿向修形能降低接触轨迹对安装误差的敏感性,会引起幅值较小的直线型传动误差。  相似文献   

17.
人字齿轮传动由于加工安装误差、轴承支撑布置无法对称等条件,不可避免会产生轴线的微量不平行。因人字齿轮齿宽较大、啮合刚度高、标准渐开线齿面线接触等特点,微量的轴线不平行度就会导致严重的齿面偏载,影响齿轮传动的平稳性和可靠性。因此,采用了小轮较大轴向浮动的轴承支撑结构,并研究了小轮轴向浮动的人字齿轮齿面承载接触仿真(LTCA)方法,通过大、小轮轴向固定和小轮轴向浮动两种不同轴承支撑结构的仿真比较,说明小轮轴向自位浮动可以有效改善齿面偏载,为人字齿轮传动系统的设计提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号