首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
为研究不同磨削速度下超声振动作用对SiC陶瓷磨削过程中材料去除机理的影响,采用钎焊单颗金刚石磨粒工具,基于连续变磨削深度试验方法,在SiC陶瓷抛光表面开展了超声辅助磨削与普通磨削对比试验。结果表明,随着单颗磨粒磨削深度的逐渐增大,SiC陶瓷超声辅助磨削与普通磨削时的材料去除机理均经历了“塑性去除→脆-塑转变→大尺寸脆性断裂”的变化;在磨削速度为1 m/s时,相比于普通磨削,单颗磨粒超声辅助磨削可显著增大SiC陶瓷的脆-塑转变临界切厚及相应的磨削划痕横截面积,并减小切向磨削力与磨削比能;而随着磨削速度的增大,超声辅助磨削与普通磨削在单颗磨粒磨削划痕尺寸、磨削力之间的差异逐渐减弱。  相似文献   

2.
采用普通磨削方式和超声振动辅助磨削方式对无压烧结SiC材料进行了磨削工艺实验,对不同磨削方式下磨削参数对磨削力比、表面损伤及亚表面损伤的影响进行了对比研究,并分析了超声振动磨削作用机制。实验结果显示,该实验中SiC材料去除主要以脆性去除为主,砂轮磨削力比随着磨削深度和进给速度的增加缓慢增加,随着主轴转速的增加略有减小;普通磨削时SiC工件亚表面损伤深度随着磨削深度、进给速度增加逐渐增加,而超声振动辅助磨削变化较小。与普通磨削相比,在相同的磨削参数下,超声振动辅助磨削的高频冲击使材料破碎断裂情况得到改善,且磨削力比减小近1/3,表面裂纹、SiC晶粒脱落、剥落等表面损伤较少,表面损伤层较浅,亚表面裂纹数量及深度都有较大程度降低,可以获得较为理想的表面质量。  相似文献   

3.
李霞 《现代制造工程》2021,(6):57-62,68
工程陶瓷零件的亚表面损伤严重影响其可靠性和使用寿命,因此探究了磨削温度对氮化硅陶瓷表面裂纹扩展的影响。首先,通过K型热电偶测温技术获得磨削参数与磨削温度的关系;其次,通过陶瓷片磨削试验获得陶瓷内部亚表面裂纹扩展情况;最后,得出磨削温度对裂纹扩展的改善机制。试验结果表明,随着磨削速度、磨削深度的增加,磨削温度增大;随着进给速度的增加,磨削温度减小。纵向裂纹在陶瓷内部扩展时会产生与原纵向裂纹扩展方向相同或者相近的新纵向裂纹,新纵向裂纹的路径在残余热应力的作用下会改变方向,出现横向裂纹,当新横向裂纹与原横向裂纹扩展路径相交后,会引起陶瓷表面的断裂和剥落。当磨削温度由456℃增加到1 035℃时,裂纹扩展深度先由8.1μm减小到3.8μm后,再增大到19.2μm,在603~732℃时,裂纹扩展深度较小,为3.8~5.6μm。研究表明适当的磨削温度对陶瓷亚表面裂纹扩展有抑制作用。  相似文献   

4.
研究高速磨削条件下砂轮线速度、切削深度等工艺参数对氧化锆陶瓷工件加工表面质量的影响。通过对单颗磨粒切削氧化锆陶瓷试件过程进行仿真,确定磨粒切削深度与切削速度对磨削力和磨削表面形貌的影响。同时,采用金刚石砂轮对氧化锆陶瓷进行平面磨削实验,获取磨削力和表面形貌等实验数据,对仿真结果进行实验验证。随着切削深度从2μm增大到8μm,单颗磨粒磨削力呈单调递增的趋势,工件表面质量逐渐恶化;当切削深度保持在2μm时,砂轮线速度对工件表面形貌影响不大;当切削深度加大到4μm以上时,提高砂轮线速度可以有效减轻磨削表面的破碎损伤。  相似文献   

5.
采用金刚石砂轮是磨削热等静压氮化硅(HIPSN)陶瓷最常用的加工方法,但是被磨零件亚表面常常伴随裂纹、崩碎等加工损伤,因此研究裂纹扩展一直是工程陶瓷的热点问题。对磨削加工后的HIPSN陶瓷亚表面裂纹进行探究,分析其在磨削加工过程中产生裂纹的原因以及去除机理,研究结果表明在磨削过程中对裂纹进行适当的控制,可以提高陶瓷零件的可靠性。设置单因素实验,对不同磨削参数下HIPSN陶瓷的磨削力进行测量,通过扫描电镜(SEM)对亚表面裂纹和表面形貌进行观察,分析磨削力对亚表面裂纹的影响。实验结果表明:磨削力随着砂轮线速度的增大而减小,随着工件进给速度和磨削深度的增大而增大;当磨削力变大时,陶瓷亚表面裂纹扩展程度增加,表面形貌变差。在粗磨加工HIPSN陶瓷时,可以通过减小工件进给速度和磨削深度,提高砂轮线速度的方法来降低裂纹的扩展程度,能够有效降低后续工艺的加工时间和难度,提高表面质量。  相似文献   

6.
为了提高大口径石英玻璃光学元件的加工效率,提出了热辅助塑性域超精密磨削石英玻璃的新方法。分析了石英玻璃的热辅助塑性域磨削机理,通过理论推导得出磨削深度对磨削区表面最高温升的影响规律。采用陶瓷结合剂立方氮化硼(CBN)砂轮对石英玻璃进行干磨削,利用磨削热改善磨削区石英玻璃的力学性能,实现了石英玻璃的高效塑性域磨削。通过磨削实验研究了不同磨削深度对石英玻璃表面粗糙度(Ra)和亚表面损伤深度的影响。实验结果表明,随着磨削深度的增加,Ra和亚表面损伤深度反而降低。当磨削深度为5μm,大于粗磨表面的裂纹深度时,获得了Ra值为0.07μm的光滑无裂纹的塑性域磨削表面。通过扫描电镜观察研究了砂轮的磨损机理,结果显示陶瓷结合剂CBN砂轮塑性域干磨削石英玻璃时,砂轮以磨耗磨损为主,该结果为研究新型的陶瓷结合剂CBN砂轮提供了依据。  相似文献   

7.
为了实现石英玻璃的高效低损伤超精密磨削加工,研究不同粒度金刚石砂轮磨削石英玻璃的表面和亚表面质量,建立表面粗糙度与亚表面损伤深度之间的关系模型。通过石英玻璃磨削试验研究400#、1 500#、2 000#和5 000#金刚石砂轮磨削石英玻璃的表面微观形貌、表面粗糙度及其亚表面损伤深度,分析相应的材料去除方式;基于压痕断裂力学理论分析脆性域磨削石英玻璃时工件表面微观形貌和亚表面微裂纹的形成机理,建立表面粗糙度PV值和亚表面损伤深度SSD之间的定量关系。研究结果表明:随着砂轮粒度的减小,石英玻璃磨削表面的凹坑、微裂纹、深划痕等缺陷逐渐减少,表面粗糙度Ra和PV以及亚表面损伤深度SSD均随之明显减小,从400#砂轮磨削表面的R_a 274.0 nm、PV 5.35μm和SSD 5.73μm降低至5 000#砂轮磨削表面的Ra 1.4 nm、PV 0.02μm和SSD 0.004μm。500#和1 500#砂轮磨削表面的材料去除方式为脆性断裂去除,2 000#砂轮磨削表面的材料去除方式同时包括脆性断裂去除和塑性流动去除,但以塑性流动去除为主,5 000#砂轮磨削表面的材料去除方式为塑性流动去除;脆性域磨削石英玻璃的表面粗糙度PV与亚表面损伤深度SSD之间满足SSD=(0.627~1.356) PV~(4/3)的数学关系。  相似文献   

8.
研究了基于电火花机械复合磨削技术加工的反应烧结碳化硅(RB-SiC)陶瓷的表面特征。用电火花机械复合磨削(EDDG)、电火花磨削(EDG)以及普通磨削(CG)三种方法加工RB-SiC陶瓷,并采用激光共聚焦显微镜和扫描电子显微镜对加工后的SiC陶瓷的表面粗糙度、表面形貌及微观裂纹进行测量和对比试验,获得了RB-SiC陶瓷的EDDG加工特性。实验显示:EDDG加工的RB-SiC陶瓷的表面粗糙度优于EDG加工的表面粗糙度,为0.214 9μm,但比CG加工的表面粗糙度0.195 6μm略差。对加工后的SiC陶瓷表面形貌观察显示,传统磨削加工后的表面存在明显划痕,EDG加工表面主要由放电凹坑组成,而EDDG加工表面同时存在放电凹坑和磨削划痕;另外,传统磨削表面也存在磨削裂纹和晶界裂纹,但EDG加工后的表面只存在热裂纹,而EDDG加工后的表面存在磨削裂纹和热裂纹,不过热裂纹可以用金刚石磨粒磨削去除。对比实验显示RB-SiC陶瓷的EDDG加工与EDG和CG加工获得了不同的表面特征。  相似文献   

9.
为研究超声振动作用对先进陶瓷磨削材料去除机理的影响,文章在超声振动方向垂直于磨削表面条件下,采用钎焊磨头对氧化锆陶瓷开展了超声辅助磨削(ultrasonic assisted grinding,UAG)试验。基于磨削表面微观形貌、磨削力和磨削比能分析,对变磨削深度条件下普通磨削(conventional grinding,CG)与超声辅助磨削的材料去除机理进行了对比。结果表明:当磨削深度低于10μm时,两种方法对应的表面材料去除机理均以塑性去除为主,且普通磨削表面伴有片层状破碎,而超声辅助磨削表面则存在尺寸细小的纹路状微破碎,同时磨削力与磨削比能也较低。当磨削深度超过10μm后,材料去除机理均转变为脆性断裂模式,且加工表面出现微裂纹,但相同条件下超声辅助磨削表面微裂纹尺寸较小。  相似文献   

10.
针对碳化硅的应用日益扩大,但它质地硬脆,高效率高质量加工总遇到障碍的情况,采用高速磨削工艺,研究了砂轮速度对磨削力和材料去除率的演变规律,开展了磨屑形态、磨削表面和亚表面形貌观察,及表面粗糙度、残余应力等一系列试验。结果表明:高速磨削能降低磨削力和磨削热,减小磨削损伤层,成比例提高砂轮速度和工件速度能增进表面完整性和提升加工效率。基于磨削层表面粗糙度和深度残余应力的检测,表明:在碳化硅高速磨削中,存在脆-延性去除机理的转化过程;高速磨削有望成为高效率高质量磨削工程陶瓷碳化硅的一条有效途径。  相似文献   

11.
Cd0.96Zn0.04Te (111) single crystals were ultraprecisely ground by #1500, #3000, and #5000 diamond grinding wheels, and the corresponding surface roughness Ra is 49.132, 18.746, and 5.762 nm. High-resolution field emission scanning electron microscope and transmission electron microscope were employed to investigate the surface and subsurface damage. After ultraprecision grinding by three kinds of diamond wheels, the subsurface can achieve ultra-low damage layer with thickness of 1–2 nm made of amorphous state material and lattice distortion layer. For the #1500 precision grinding, the subsurface damage is mainly multi-nanocrystal with diameter in the range of 5–20 nm. While for the #3000 precision grinding, the subsurface damage is made of amorphous state material containing nanocrystals with diameter mainly in the range of 2–5 nm, and the bending deformation is mainly conducted through dislocation pleat formation. For #5000 ultraprecision grinding, the subsurface damage is mainly amorphous state material, and nanocrystals with diameter in the range of 2–5 nm enrich adjacent to the ground surface. Moreover, the size of nanocrystal ground by #5000 diamond grinding wheel is mainly 2 nm. Fracture mechanism ground by #5000 diamond grinding wheel firstly turns onto thin amorphous state film, then fracture.  相似文献   

12.
This paper presents results obtained from the grinding of aluminium-based metal matrix composites reinforced with either aluminium oxide (Al2O3) or silicon carbide (SiC) particles using grinding wheels made of SiC in a vitrified matrix or diamond in a resin-bonded matrix. The study used grinding speeds of 1100–2200 m min-1 , a grinding depth of 15 _m for rough grinding and 0.1–1 _m for fine grinding, a crossfeed of 3 mm and 1 mm for rough and fine grinding, respectively,while maintaining a constant table feedrate of 20.8 m min -1 . Surface integrity of the ground surfaces and subsurfaces was analysed using a scanning electron microscope and a profilometer. Grinding using a 3000-grit diamond wheel at depths of cut of 1 _m and 0.5 _m produced ductile streaks on the Al2O3 particles and the SiC particles, respectively. There was almost no subsurface damage except for rare cracked particles when fine grinding with the diamond wheel.  相似文献   

13.
This paper aims at studying the machinability of 2D C/SiC composite with 0°/90° woven carbon fibers using a resin bond diamond grinding wheel. The effects of grinding parameters on the grinding force, force ratio, specific grinding energy, surface topography, surface roughness, and grinding chips were investigated. And the grinding mechanism of the 2D C/SiC composite was discussed by analyzing the chip components and material removal characteristics. The results indicate that the grinding force and surface roughness increase with the increase of feeding speed and depth of cut, while decrease with the increase of wheel speed. The force ratio F n /F t and the specific grinding energy of 2D C/SiC composite were lower than those of conventional ceramics under the defined experimental conditions. Additionally, the grinding chips were composed of carbon powder, carbon fiber fragments, and SiC matrix debris. It can be deduced that the dominant removal mechanism of the 2D C/SiC composite was brittle fracture mode during grinding process.  相似文献   

14.
Abstract

The effect of grinding-induced damage, on the strength of a yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and a zirconia-tough-ened alumina (ZTA) was investigated. The four-point flexure test was used to measure fracture strength as a function of grinding conditions. Flexure bar specimens were prepared by surface grinding transverse to the tensile stress direction in flexure testing. Two series of grinding experiments were performed. In the first series, four wheels with diamond particle sizes ranging from 25 to 180 μ,m were used to grind specimens at a fixed depth of cut. The strength of the Y-TZP decreased slightly with increasing diamond particle size. For ZTA the strength loss was increased as diamond particle size was increased. In the second series, one grinding wheel with a diamond particle size of 180 μm was used to grind specimens at a depth of cut per pass ranging from 2.5 to 100 μm. The Y-TZP showed a slight decrease in strength when the depth of cut was increased. However, for ZTA, the strength first decreased, then increased with increasing depth of cut. The grinding-induced subsurface damage, observed by a bonded-interface sectioning technique, consisted of cracks for ZTA, but no subsurface cracks could be found for Y-TZP. The effect of machining damage on the strength of ZTA was explained using the observed subsurface cracks and residual stresses that were measured using an indentation technique  相似文献   

15.
Ultrasonic assisted grinding (UAG) is an outstanding technology suitable to machine advanced ceramics. During UAG, the effect of ultrasonic vibration on grinding process is mainly determined by matching performance between grinding and vibration parameters in theory. However, this problem is still lack of deep study. With an objective to study the matching performance deeply, conventional grinding (CG) and UAG tests were conducted. The effects of grinding parameters on grinding force, ground surface profile wave, and ground surface roughness between UAG and CG were studied. The results showed that the grinding force, ground surface profile wave height, and ground surface roughness during UAG were reduced in varying degrees compared to CG. Additionally, the reduction percentage that means the effect of ultrasonic vibration on grinding process decreased significantly with increasing grinding speed while affected slightly by increasing of feedrate and grinding depth. To deeply analyze this variety law of the ultrasonic vibration effect during UAG, a matching performance equation referred to grinding wheel diameter, grinding, and vibration parameters is proposed. When the grinding speed increases from 1.26 to 31.5 m/s for feedrate of 100 mm/min and grinding depth of 5 μm, reduction percentage in grinding force for UAG compared to CG (K F) decreases from about 20 to 4 % and in ground surface roughness (K R) decreases from 35 to 4 %. With regard to the average difference height (Δh) between the UAG and CG profile waves, it decreases from 2.77 μm almost to zero.  相似文献   

16.
Coarse-grained wheels can realize high efficient grinding of optical glass. However, the serious surface and subsurface damage will be inevitably introduced by the coarse-grained wheels. In this paper, the grinding damage of a copper-resin bond coarse-grained diamond wheel with grain size of 150μm was investigated on optical glass BK7. The wheel was first properly trued with a metal bond diamond wheel, then pre-dressing for the wheel and grinding experiments are carried out on a precision grinder assisted with electrolytic in process dressing (ELID) method. The surface roughness (Ra) of ground surface was measured using an atomic force microscope (AFM) and the surface topography were imaged by a white light interferometer (WLI) and the AFM. The subsurface damage level of ground surface was evaluated by means of both MRF spot method and taper polishing-etching method, in term of the biggest depth of subsurface damage, distribution of micro defects beneath the ground surface, the cluster depth of subsurface damage, relationship between subsurface damage (SSD) and PV surface roughness (SR), propagating distance and pattern of cracks beneath the ground surface. Experimental results indicate that a well conditioned copper-resin bond coarse-grained diamond wheel on a precision grinder can generate good surface quality of Ra less than 50nm and good subsurface integrity with SSD depth less than 3.5ε for optical glass BK7.  相似文献   

17.
针对超音速火焰喷涂WC-17Co高硬涂层的加工难题,对WC-17Co涂层进行了高速/超高速磨削试验。通过考察不同金刚石砂轮和磨削工艺参数对磨削力、磨削温度和表面残余应力、表面/亚表面微观形貌和表面粗糙度的影响,讨论了最大未变形切屑厚度与比磨削能的内在关系,分析了磨削温度对表面残余应力的作用规律,探讨了法向磨削力对涂层亚表面损伤的作用规律。结果表明:WC-17Co涂层磨削去除是脆性和延性去除并存;提高砂轮线速度将使磨削力先快速减小后缓慢增大,磨削温度持续升高,涂层磨削从脆性去除转为延性去除的趋势也逐渐增强,表面残余应力由压应力逐渐转变为拉应力,而磨削高温引起涂层热塑性变形是表面残余应力状态转变的根本原因。涂层亚表面磨削损伤层平均深度随法向磨削力的增大而变大。提高砂轮线速度、降低工作台速度和减小磨削深度均能增大涂层磨削塑性去除的比例。  相似文献   

18.
After finishing the precision conditioning of mono-layer nickel electroplated coarse-grained diamond wheels with 151 μm (D151), 91 μm (D91) and 46 μm (D46) grain size, resp., profile and surface grinding experiments were carried out on a five-axis ultra-precision grinding machine with BK7, SF6 optical glasses and Zerodur glass ceramic. A piezoelectric dynamometer was used to measure the grinding forces, while an atomic force microscopy (AFM), white-light interferometer (WLI)) and scanning electron microscope (SEM) were used to characterize the ground surface quality in terms of micro-topography and subsurface damage. Moreover, the wear mechanics of the coarse-grained diamond wheels were analyzed and the grinding ratio was determined as well, in aiming to evaluate the grinding performance with the conditioned coarse-grained diamond wheels. Finally, the grinding results were compared with that of the fine-grained diamond wheels with regard to the ground specimen surface quality, process forces and wheel wear as a function of stock removal. The experimental results show that the precision conditioned coarse-grained diamond wheels can be applied in ductile mode grinding of optical glasses with high material removal rates, low wheel wear rates and no dressing requirement yielding excellent surface finishes with surface roughness in the nanometer range and subsurface damage in the micrometer range, demonstrating the feasibility and applicability of the newly developed diamond grinding technique for optical glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号