首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
建立水润滑塑料合金轴承的数学模型,对水润滑条件下塑料合金轴承的弹流润滑问题进行数值模拟,讨论转速和载荷对水润滑膜压力和膜厚的影响。结果表明:在水润滑条件下,转速对水润滑膜的压力影响不明显,而膜厚及最小膜厚随转速的增大而明显增大;随载荷的增大,压力峰值有明显增大,而在入口区压力随载荷增大而减小,膜厚及最小膜厚随载荷增大而减小。  相似文献   

2.
利用考虑惯性力的Reynolds方程,对乳化液润滑条件下复合塑料轴承的弹流润滑问题进行了数值模拟,讨论了载荷、转速和轴承轴径大小对乳化液膜压力和膜厚的影响.结果表明:在乳化液润滑条件下,惯性力对乳化液膜压力的影响很小,而对乳化液膜厚度的影响较大;随着载荷的增大,压力峰值有明显增大,而在入口区压力随载荷增大而减小,膜厚以及最小膜厚随载荷减小而明显增大;转速和轴承轴径大小对乳化液膜压力的影响不明显,而膜厚以及最小膜厚随转速增大而明显增大,随轴承轴径的增大而减小.  相似文献   

3.
建立磁流体润滑机床主轴滑动轴承的弹流润滑模型,并进行弹流润滑数值模拟分析.探讨载荷和速度对磁流体润滑膜压力和膜厚的影响.分析结果表明:在磁流体润滑条件下,当转速不变时,压力峰值随着载荷的增大而增大,入口区压力、膜厚及最小膜厚随载荷的增大而减小;当载荷不变时,压力随着速度的增加没有明显变化,膜厚及最小膜厚都随速度增大而增加.  相似文献   

4.
利用考虑热效应的Reynolds方程,对水润滑条件下的飞龙轴承进行考虑热效应时的弹流润滑理论分析。通过数值模拟讨论载荷、转速和轴径对水润滑膜压力及膜厚的影响。结果表明:热效应对水润滑膜压力的影响几乎可以不计,而膜厚减小;随载荷增大,压力峰值有所增大,膜厚随载荷的增大而减小;随转速的增大压力峰值减小,而膜厚随转速的增大而增大;轴径的大小对压力的影响不明显,但随轴径的增大膜厚减小。  相似文献   

5.
利用Reynolds方程,对海水润滑条件下赛龙轴承在考虑热效应时的弹流润滑问题进行数值模拟,讨论载荷、转速和轴承轴径大小对海水润滑膜压力及膜厚的影响。结果表明:热效应对于水膜压力影响很小,而考虑热效应时的膜厚会有所减小;随载荷的增大,压力峰值有所增大,膜厚随载荷的增大有明显的减小;随转速的增大压力峰值减小,而膜厚随转速的增大而有明显的增大;轴径的大小对于水膜压力和膜厚的大小影响不明显。  相似文献   

6.
为了寻求一种能够快速建立高速小型复合陶瓷球轴承弹流润滑数学模型的数值计算方法,基于Reynolds方程的情况下运用Fortran语言在Visual Studio中进行编译,通过给定初始压力分布,运用迭代法求得弹流润滑完全数值解,并获取最终的压力和膜厚值。结果表明:转速、载荷以及润滑油粘度会对轴承的接触区压力、膜厚产生影响,其中随着转速的增加,最小膜厚增加,最大压力减小;随着载荷的增加,最小膜厚减小,最大压力增大;而随着润滑油粘度的增加,膜厚增加,最大压力减小。通过与传统理论计算结果的对比,结果具有较好的一致性,研究结果对高速深沟陶瓷球轴承运用具有指导意义。  相似文献   

7.
《机械传动》2016,(5):105-109
利用考虑惯性力的Reynolds方程,对水润滑飞龙滑动轴承进行流体润滑数值分析。探讨不同载荷、转速以及表面粗糙度对压力和膜厚的影响,并与不考虑流体惯性力的热弹流解进行对比。结果表明,考虑流体惯性力的影响时,入口区压力增大,压力峰值有所减小,中心膜厚与最小膜厚均增大;随着载荷的增大,压力峰值增大,入口区的压力和膜厚减小;随着转速的增大,压力峰值减小,入口区压力及润滑膜膜厚增大;轴承表面粗糙度使得压力和膜厚均出现了连续波动,压力峰值增大,最小膜厚减小。  相似文献   

8.
考虑了时变效应、轴承表面海水润滑膜温度场和两固体表面横向粗糙度等因素,对塑料轴承的弹流润滑问题进行研究.利用压力求解的顺解法及温度求解的逐列扫描技术,得到塑料轴承时变微观热弹流润滑问题的完全数值解.讨论了粗糙度函数幅值和波长及载荷、转速对于海水润滑膜压力及膜厚的影响.数值计算结果表明,粗糙度的几何参数对润滑性能有着不同程度的影响;随载荷的增大,压力增大,膜厚减小;转速对压力影响较小,随转速的增大,膜厚增大.  相似文献   

9.
考虑轴承表面海水润滑膜温度场和轴承表面横向粗糙度等因素,对塑料轴承的弹流润滑问题进行了研究。利用压力求解的多重网格法和弹性变形求解的多重网格积分法以及温度求解的逐列扫描技术,得到塑料轴承微观热弹流润滑问题的完全数值解,讨论了连续波状粗糙度、载荷、轴承转速对海水润滑膜压力及膜厚的影响。数值计算结果表明:轴承表面粗糙度对润滑膜压力和膜厚分布都有一定影响,连续波状粗糙度使润滑膜压力和膜厚分布产生振荡;转速和载荷对压力分布影响较小,随转速的增大、载荷的减小,膜厚都有明显的增大。  相似文献   

10.
建立陶瓷球轴承热弹流润滑的数学模型,利用多重网格法和逐列扫描法,得到陶瓷球轴承的点接触热弹性流体动力润滑完全数值解,并与普通轴承计算结果进行比较。结果表明:转速与载荷会对陶瓷轴承的接触区的压力、膜厚、温度产生影响,其中随着转速的增加,最小膜厚增加,摩擦因数减小,滚动体表面温度下降,而随着载荷的增加,最小膜厚减小,摩擦因数增大,滚动体表面温度上升;在相同的工况参数下,陶瓷球轴承的油膜压力低于普通轴承,膜厚高于普通轴承,轴承内圈、滚动体、中层油膜的温升小于钢质轴承,因而陶瓷轴承的润滑性能更好,使用寿命更长。  相似文献   

11.
乳化液润滑轧辊轴承的弹流润滑分析   总被引:1,自引:0,他引:1  
建立乳化液润滑轧辊轴承的数学模型,分别在等温和热条件下对乳化液润滑轧辊轴承的弹流润滑问题进行数值模拟,讨论轧制力和转速对乳化液润滑膜压力和膜厚的影响。结果表明:等温条件下,当轧制力一定时,随着转速的增加第二压力峰增大,而膜厚及最小膜厚都增大;随着轧制力的增大,压力峰值有显著增大,但在入口区压力、膜厚及最小膜厚减小。热条件下,随着轧制力增大,膜厚和最小膜厚逐渐减小,而对压力几乎没有影响;随着转速的增大,膜厚和最小膜厚逐渐增大,压力逐渐减小,第二压力峰也逐渐降低甚至消失。  相似文献   

12.
《机械传动》2017,(1):11-15
以轧机油膜轴承为研究对象,利用考虑热效应的Relnolds方程建立了油水两相弹流润滑模型,对比了3种常用衬套材料对轧机油膜轴承润滑性能的影响,结合轧机油膜轴承的特殊工况讨论了不同含水量、主轴转速和轧制力下的油水两相流体的润滑特性。结果表明:3种衬套材料中,巴氏合金的最大压力及中心压力最小,整体膜厚、中心膜厚及最小膜厚值最大,润滑性能最好,最大温度最大,散热性最好,选用巴氏合金作为衬套材料最为合适;油膜进水后随着含水量的增加,最大压力减小,润滑膜入口区的压力增大,最小膜厚增大,润滑性能提升;随着主轴转速增加,润滑膜最大压力减小,入口区压力增大,最小膜厚增加;随着轧制力的增加,最大压力增大,入口区压力减小,最小膜厚减小。  相似文献   

13.
建立了含固体颗粒的弹流润滑模型,推导了考虑颗粒效应的Reynolds方程,考虑了时变效应、载荷和转速,对直齿轮跑合进行了弹流润滑分析。结果表明:颗粒所在区域2的油膜压力显著增大,考虑颗粒后的膜厚减小。颗粒尺寸增大,油膜压力增大,膜厚减小。载荷增大,颗粒所在区域2的油膜压力增大,膜厚减小。转速越小,固体颗粒效应越明显,油膜压力变化显著,膜厚变小。考虑固体颗粒后的最小膜厚和最大压力均变小,中心油膜压力有所增大,中心膜厚减小。  相似文献   

14.
由于薄壁构件在受力情况下产生挠度变形,对弹流润滑有一定影响,导致原来的弹流润滑计算存在较大误差,经典的接触模型已不再适用。提出一种考虑薄壁平板挠度变形的弹流润滑线接触模型,该模型能够确切反映薄壁平板的挠度变形对弹流润滑的影响;采用有限元仿真软件建立薄壁平板的挠度变形模型,在挠度变形的基础上,分析速度参数及载荷参数对线接触弹流润滑性能的影响。研究结果表明:挠度变形对薄壁件润滑的影响十分明显,油膜压力减小,中心膜厚分布范围增大,膜厚值减小;随着速度及载荷参数发生变化,油膜压力及膜厚也相应地发生改变;当其他条件不变时,中心油膜厚度随速度的增加而增大,且中心油膜区域逐渐增加,速度参数对油膜压力影响较大,油膜压力随着速度的增加而升高,颈缩现象逐渐出现;油膜压力随着载荷的增大而升高,同时油膜厚度逐渐减小。  相似文献   

15.
不同载液磁流体热弹流润滑性能对比   总被引:4,自引:0,他引:4  
建立磁流体润滑滑动轴承的弹流润滑模型.利用考虑热效应的雷诺方程,用多重网格法对磁流体润滑滑动轴承进行弹流润滑分析.比较不同载液磁流体润滑滑动轴承的润滑膜膜厚和压力分布.通过对比酯基H01磁流体、烃基E03磁流体和水基A01磁流体的润滑膜膜厚和压力,选择水基磁流体做进一步的研究,探究载荷和速度对水基磁流体润滑滑动轴承的润滑膜弹流性能的影响.结果表明:与等温条件下相比,不同载液磁流体润滑膜的压力没有变化,但是磁流体润滑膜的膜厚都减小;在不同转速条件下,水基磁流体润滑膜的入口区压力随着转速增加而增大,膜厚随着转速增加而增厚,压力峰随着转速增加而减小;在不同载荷条件下,水基磁流体润滑膜的入口区压力随着载荷增加而减小,膜厚随着载荷增加而减小,压力峰随着载荷增加而增大.  相似文献   

16.
许桢  栗心明  郭峰 《润滑与密封》2012,37(6):27-30,45
设计一种简单的实验方法,通过调节弹流接触中心和旋转中心之间的距离,可获得不同程度的自旋,即得到不同的旋滑比。采用玻璃块-椭圆滚子接触的方式,应用光干涉自旋弹流薄膜测量系统研究界面滑移条件下自旋对弹流油膜的影响。结果表明,随旋滑比的增大,油膜形状失去了经典弹流油膜的对称性;一定偏心距下,随速度和载荷的增加,油膜形状的非对称性都增强,入口凹陷逐渐都变得明显,但油膜厚度变化趋势不同,其中随速度的增加,油膜厚度而增加,且接触区两侧最小膜厚的差值也增加,而随载荷的增加,接触区左侧最小膜厚逐渐减小,右侧最小膜厚先增加后减小。  相似文献   

17.
采用迭代法,建立高速深沟陶瓷球轴承点接触等温弹流润滑计算模型.根据实际载荷和工作环境,推导出轴承润滑的边界条件,对各种沟曲率半径系数的轴承模型进行数值仿真分析计算,得出了内外沟曲率半径系数分别与轴承压力区最高压力和膜厚的关系。结果表明:在相同载荷速度和润滑油的情况下,内圈沟曲率半径系数为0.5145和0.5196时,轴承内外圈与滚动体接触区最小膜厚相同,在这个区域内外圈接触区膜厚较为接近.在相同载荷速度和润滑油情况下,内外圈接触区最大压力随着沟曲率半径系数的增大而增大。通过与传统理论计算的对比,结果具有较好的一致性,研究结果对高速深沟球轴承参数优化具有指导意义。  相似文献   

18.
以水润滑橡胶轴承为研究对象,建立轴承供水条件分析的润滑模型,讨论乏水和充分供水条件下转速和载荷对水润滑膜膜厚的影响。结果表明:起初随着供水膜厚的增加,中心膜厚随之增加,但当其增加到一定程度后,中心膜厚不再随之变化,存在一个供水临界点;在水润滑条件下,不论是乏水还是充分供水,膜厚及最小膜厚随转速的增大而明显增大,随载荷增大而减小。  相似文献   

19.
建立旋滑条件下椭圆接触弹流润滑的数学模型,用多重网格法求得该条件下的完全数值解,研究速度、载荷、偏心距和椭圆比对油膜厚度、形状和压力的影响。结果表明,偏心距较小时,油膜厚度和形状都与普通弹流有明显的不同;速度、载荷和椭圆比增加及偏心距减小,均会导致接触区两侧最小膜厚的差值增大,油膜形状的非对称性增强;速度、椭圆比增加,油膜厚度增加,接触区压力减小,载荷增加或偏心距减小,油膜厚度减小,接触区压力增加。  相似文献   

20.
利用光干涉测量技术,测量了滚子-盘有限长线接触副的润滑油膜形状和厚度,研究了滚子副的润滑状态随载荷、速度转变的规律。结果表明,接触区卷吸速度增加或载荷减小,使得滚子-盘接触副润滑状态逐渐由弹流润滑转变为流体动力润滑,且在两种润滑状态转变过程中存在过渡状态;由载荷变化引起流体动力润滑状态转变为弹流润滑状态过程中,接触区表面发生了弹性变形,使得接触区的油膜厚度增加。速度变化使滚子-盘接触处于流体动力润滑状态时,油膜出口颈缩消失,最小膜厚位置由出口颈缩处移至接触区中心,油膜光干涉图关于滚子轴线对称。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号