首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
基于质量守恒边界条件建立Y形槽液膜密封性能分析数学模型,采用有限差分法对广义Reynolds方程进行离散,通过SOR迭代方法对离散方程进行求解,得到液膜承载能力、液膜刚度、摩擦扭矩以及泄漏量等性能参数,并探讨Y形槽液膜密封结构参数对密封性能的影响。结果表明:槽数、周向槽台比和径向槽宽比等结构参数对密封性能有显著影响,液膜承载能力和液膜刚度随着这些结构参数的增大均呈现先增大后减小的趋势,摩擦扭矩随着这些结构参数的增大而增大;泄漏量随着槽数的增加先增大后趋于平稳,随着周向槽台比的增大先增大后减小,随着径向槽宽比的增大而减小;在文中计算条件下,槽数取12~14,槽深取30~35μm,螺旋角取12°~16°,周向槽台比取0.7~1.1,径向槽宽比取0.8~1.0时,Y形槽液膜密封具有较好的稳定性和密封性能。  相似文献   

2.
单列双向螺旋槽干气密封主要结构参数对性能的影响   总被引:1,自引:0,他引:1  
针对一种用于高速高压等极端工况下的新型单列双向螺旋槽端面密封装置,采用商业CFD分析软件FLUENT,在等密封闭合力的假设条件下,研究了动环槽形几何结构参数,如螺旋角φ、槽深膜厚比Hg及槽长坝长比γ等对密封性能(泄漏量及气膜刚度)的影响.综合考虑了较小密封泄漏量和较大的气膜刚度,计算结果表明结构参数18°<φ<19°,4<Hg<7, 0.5<γ<0.7较适宜.  相似文献   

3.
针对电机轴承密封可靠性差的问题,提出一种适用于电机的枞树型槽上游泵送机械密封。在MATLAB环境下求解液膜稳态雷诺方程,得到枞树型槽上游泵送机械密封端面液膜压力分布,分析端面结构参数如槽深比、螺旋角、槽坝比对密封稳态特性的影响规律,并给出枞树型槽结构参数的设计优选范围。结果表明:该机械密封具有较好的动压效应;随着槽深比的增加,开启力、泵送量和液膜刚度均先增大后迅速减小,摩擦因数则缓慢增大;随着螺旋角的增大,开启力和泵送量逐渐减小,刚度先增大后减小;随着槽坝比的增大,开启力和泵送量增加,摩擦因数增大,刚度先逐渐增大而趋于稳定;槽深比和螺旋角对枞树型槽上游泵送机械密封的稳态特性影响较大,而槽坝比的影响较小;取槽深比1. 0~4. 0、螺旋角15°~25°、槽坝比1. 5~2. 5时,机械密封可获得较大开启力和液膜刚度、较小摩擦因数等较好的综合性能。  相似文献   

4.
螺旋槽气膜浮环密封结构参数设计分析   总被引:1,自引:1,他引:0  
介绍了螺旋槽气膜浮环密封的结构特点,利用CFD-FLUENT软件分析比较了普通浮环、无坝区螺旋槽浮环和有坝区螺旋槽浮环3种结构的密封性能,建立了螺旋槽几何结构参数变化对浮升力、泄漏量等影响的规律曲线。计算结果表明:有坝区螺旋槽浮环结构密封性能最好;螺旋槽结构参数对密封特性影响较大,综合考虑较小的泄漏量和较大的浮升力,取较小的螺旋角,槽数26~30,槽长7~9mm,槽深25μm左右,槽宽比0.5较适宜。  相似文献   

5.
基于满足质量守恒的空化模型,利用CFD FLUNET软件建立螺旋槽液膜密封端面三维模型,探讨螺旋槽结构参数对密封端面空化产生的影响规律,分析端面空化对密封端面间流体膜的开启力、液膜刚度、泵送率等的影响。结果表明:以液膜中气相体积分数变化为判据,空化效应随槽深和槽数的增加而增强,随槽径宽径比的增加呈现先增强后减弱的趋势,但随螺旋角的增加而减弱;考虑空化效应后,液膜开启力和泵送量的数值与未考虑时有所降低,但变化趋势基本一致,而液膜刚度在一定的螺旋槽结构参数范围内波动较大,影响液膜的稳定性。因此,端面空化易导致密封失效。  相似文献   

6.
应用fluent软件对螺旋槽型机械密封润滑液膜特性进行了数值模拟,得到了润滑液膜流场的压力分布、泄漏量、液膜开启力;通过比较不同螺旋槽几何参数的密封特性,得到了较优的螺旋槽型几何参数值:槽数12、螺旋角0.3 rad、槽长比0.7、槽宽比0.7、槽深10μm。  相似文献   

7.
采用有限差分方法,基于对螺旋槽端面气膜压力分布、流速分布和泄漏率变化的数值计算分析,探讨低压上游泵送螺旋槽气体端面密封实现被密封介质零泄漏的作用机制和变化规律。结果表明,螺旋槽上游泵送作用可在高压侧形成周向封闭的高于密封压力的高压流体环带,阻止被密封介质进入密封间隙,实现被密封高压介质的零泄漏,形成密封介质的完全的反向泄漏;泄漏率随转速、槽数和膜厚的增加先减小后增大,随槽深、螺旋角和槽台宽比的增加先增大后减小,随槽根半径增加而减小;当转速、膜厚和槽数达到一定值时,泄漏方向会发生改变;开启力随转速和槽数增加而增大,随着膜厚的增大而减小,随槽深、螺旋角、槽台宽比和槽根半径的增加呈先增大后减小的趋势。  相似文献   

8.
螺旋槽上游泵送机械密封密封特性数值计算   总被引:7,自引:1,他引:6  
建立考虑机械密封端面径向锥度的理论模型。采用有限元法求解修正的雷诺方程,得出螺旋槽上游泵送机械密封端面间液体的压力分布,分析不同黏度下膜厚、端面径向锥度对密封特性参数的影响规律。结果表明,螺旋槽上游泵送机械密封端面间液膜压力呈三维凸形曲面;液膜厚度越大,开启力越小,液膜刚度系数在某点取得峰值;径向锥度越大,径向压力峰值、开启力和摩擦因数越小,泄漏率在某点取得最小值;综合考虑较小密封泄漏量和较小摩擦因数,径向锥度取值范围为-1.5×10-4β-0.5×10-4较适宜。  相似文献   

9.
建立考虑离心惯性项与不考虑离心惯性项的螺旋槽液膜密封数学模型,采用有限元法计算2种条件下的液膜密封开启力、刚度及泄漏量,并进行对比分析。结果表明:随着转速的增加,液膜密封开启力、刚度、泄漏量呈线性增加;随着膜厚的增加,液膜密封开启力、刚度逐渐减小,而泄漏量逐渐增大;不同转速和不同膜厚下,离心惯性项对液膜密封开启力、刚度的影响可忽略,转速较高、膜厚较大时,离心惯性项对液膜密封泄漏量的影响不可忽略。  相似文献   

10.
针对螺旋槽动压密封液膜发生汽化相变后,严重影响密封运行的可靠性和稳定性的问题,基于密封端面液膜汽化相变,建立了其数值计算模型。采用了以泄漏量和开启力两个密封性能参数为优化目标,螺旋角、槽数、槽深、槽坝比和槽堰比5个密封端面结构参数为变量的五因素、五水平的正交优化试验方案;研究了密封端面液膜汽化相变下,不同密封端面结构参数对密封性能的影响规律。研究结果表明:密封结构参数对泄漏量和开启力的影响灵敏度不同,设计的正交试验方案可以有效地对密封性能进行优化,可为此类工况下的密封装置的结构优化设计和实际操作提供参考。  相似文献   

11.
蜂窝密封在小功率汽轮机轴端密封上的应用   总被引:1,自引:0,他引:1  
蜂窝密封具有良好的密封性能,可以有效地减小泄漏量和提高转子的稳定性。针对某小功率汽轮机轴端密封泄漏严重问题,应用蜂窝密封对其高压端和低压端分别进行改造,并通过仿真分析和实际应用验证改造效果。改造结果表明,蜂窝密封有效地减少了蒸汽的泄漏量,降低了轴承润滑油的乳化程度,一定程度上抑制了转子的流体激振,降低了机组运行的噪声。  相似文献   

12.
船舶艉轴剖分式机械密封结构分析   总被引:1,自引:0,他引:1  
针对船舶艉轴机械密封装置安装、维修、拆卸时工作量大和时间长的问题,对几种剖分式机械密封副和密封圈结构进行了评价分析,并讨论了这些结构的特点和应用前景。  相似文献   

13.
大直径高压密封的研制   总被引:1,自引:1,他引:0  
通过简化的机械密封模型推导的算式,对用于大直径高压密封的组合密封中的主密封关键技术参数进行计算,同时基于容漏空间的概念,对主密封进行设计。实验验证了设计的大直径高压密封的有效性,该方法对类似工况的密封设计具有一定的指导意义。  相似文献   

14.
阀门启闭件软硬组合密封   总被引:3,自引:1,他引:3  
介绍一种阀门启闭件软硬组合密封结构设计、工作原理、功能及应用情况。  相似文献   

15.
张建  吴开荣 《流体机械》2004,32(7):35-37
分析了干气密封的工作原理,介绍了重整循环氢压缩机串联干气密封的结构及其控制系统工作原理。  相似文献   

16.
魏仪昌 《润滑与密封》1993,(3):51-52,54
  相似文献   

17.
许振石  樊军 《传动技术(上海)》2010,24(4):38-40,37,47
随着密封技术的发展,传统的密封技术不断得到改进,新密封技术也不断推陈出新,本文就几种密封技术(如磁流体密封、干气密封、蜂窝密封、刷式密封)作简要的概述及密封技术在软件开发上发展。  相似文献   

18.
对填料静密封行业的现状进行了分析,结合自己的实践和对"十二五"规划的认识和体会,阐述和分析了填料静密封行业的发展方向和发展重点。  相似文献   

19.
本文论述了闲置密封的结构特点与工作原理,给出了闲置密封设计方法。研制出适用于液态烃泵等高参数、关键泵上的闲置密封及主密封失效的监控系统。  相似文献   

20.
利用ANSYS对流体静压式核电站主泵密封的第二级密封动环组件建模,计算得到密封环在高压下的变形情况,通过Fluent对核电站主泵第二级密封在高压情况下端面流场建模,得到密封端面流场的压力分布、速度场及密封的开启力和泄漏量.计算模拟了机械密封环的端面变形及机械密封由接触式机械密封转变为非接触式机械密封过程.结果表明,核电站主泵的第二级密封的动环组件在第一级密封失效的情况下会通过变形形成收敛面非接触型机械密封,并能在工况要求的情况下正常工作.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号