首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
纳米硬质合金高速深磨工艺试验研究   总被引:1,自引:0,他引:1  
采用树脂结合剂金刚石砂轮对不同晶粒度硬质合金进行了高速深磨试验,对比分析了砂轮速度、磨削深度以及工作台速度对磨削力、表面粗糙度及磨削表面形貌的影响,分析了纳米硬质合金材料高速深磨去除机理。试验结果表明:随着砂轮速度增加,工作台速度降低和磨削深度减小,将导致最大未变形磨屑厚度减小,单位面积磨削力减小,比磨削能增加,表面塑性去除比例增加。随着晶粒度的减少,磨削力和比磨削能降低,表面粗糙度值减少,纳米硬质合金更易表现为脆性断裂方式去除。对纳米硬质合金采用高速深磨工艺技术可以提高加工效率,同时可以保证较好的表面质量。  相似文献   

2.
超硬微结构表面模具的精密磨削加工技术   总被引:4,自引:0,他引:4  
针对超硬模具材料,研究磨削方式(顺磨和逆磨)、进给率和主轴转速等磨削参数对磨削后微结构表面的表面粗糙度和尖锐部分完整性的影响规律.基于磨削结果,对微结构表面质量不均一现象以及微结构表面磨削过程中的砂轮磨损分布进行研究.试验结果表明磨削后的微结构侧表面粗糙度小于底面粗糙度.采用逆磨可以获得更低的粗糙度和更加完整、锋利的尖锐部分.磨削后的表面粗糙度随着进给率的降低而减小,当进给率为0.2 mm·min-1时,微结构底面平均表面粗糙度Ra89 nm,侧面为Ra 60nm.磨削后,尖锐部分圆弧半径随进给率的降低呈现减小趋势,当进给率为0.5 mm·min-1时,其平均圆弧半径最小,为0.67 μm.主轴转速对表面粗糙度和尖锐部分圆弧半径的影响不大.由阶梯光栅表面结构性引起的,相对于其各个表面的磨削轨迹不相同,是导致磨削后阶梯光栅表面质量不均一现象主要原因.在微结构表面的磨削加工过程中,相对于砂轮的径向和轴向磨损,砂轮的形貌磨损更为严重.  相似文献   

3.
利用模压成型技术和真空钎焊技术制备出了磨粒把持力大、力学性能优良的多层钎焊金刚石砂轮;采用在线电解修整技术促使磨钝的磨粒及时脱落,使砂轮在磨削过程中始终保持锋利性;并开展了基于多层钎焊金刚石砂轮在线电解修整技术的超细晶硬质合金精密磨削试验。试验结果表明:在相同磨削条件下,多层钎焊砂轮在线电解修整磨削力较无修整时的磨削力下降了33.7%~57.9%;多层钎焊砂轮在线电解修整磨削技术能有效提高加工表面质量。当进给速度为30 mm/s,磨削深度为15 μm时,无电解磨削加工表面粗糙度为0.35 μm,而在线电解修整磨削表面粗糙度仅为82.1 nm;多层钎焊砂轮在线电解修整磨削残余应力仅为无电解磨削时的38.2%~49.5%。且在线电解修整磨削表面完整性较好,没有出现表面/亚表面裂纹等相关缺陷,可实现超细晶硬质合金等难加工材料的高效精密加工。  相似文献   

4.
为提高航空结构件加工效率和表面质量,通过单一铣削参数实验,研究采用两种硬质合金刀具在高速铣削7050-T7451铝合金时,主轴转速、径向铣削深度、铣削进给速度等切削参数以及加工方式(顺铣、逆铣)对表面粗糙度的影响.分析表明:表面粗糙度随刀具尺寸和径向切深增大而增加,在铣削进给速度增加趋势下仅有较小波动,不受主轴转速直接...  相似文献   

5.
为解决超硬金刚石砂轮修锐效率较低以及环境友好性等问题,采用干式接触放电修锐(ECD)技术对粗金刚石砂轮进行修锐,获得较高的磨粒出刃,可以实现硬质合金和模具钢等高强高硬材料的高效精密镜面磨削加工。对46#金属结合剂粗金刚石砂轮进行机械修锐和干式ECD修锐,再利用修锐后的粗金刚石砂轮对硬质合金和模具钢进行干式轴向磨削加工,对比分析两种修锐条件下磨削工艺参数对硬质合金干磨削力、磨削表面粗糙度和磨削力比的影响。实验结果表明:硬质合金的干式轴向磨削力及其表面粗糙度随砂轮速度的增大而减小,随进给速度和切削深度的增大而增大;与机械修锐相比,干式ECD修锐能够获得更高的磨粒出刃和更好的表面质量,以及更小的磨削力和磨削力比;硬质合金和模具钢的干磨削表面粗糙度Ra分别可达0.058μm和0.022μm。  相似文献   

6.
磨削参数对超细硬质合金磨削表面粗糙度的影响   总被引:1,自引:0,他引:1  
在使用金刚石砂轮的平面磨床上对超细硬质合金进行了磨削试验研究。通过扫描电子显微镜观察磨削表面形貌和用表面粗糙度测定仪测量磨削表面粗糙度,分析了磨削参数对超细硬质合金磨削表面粗糙度的影响。研究结果表明,同一切深下,超细硬质合金磨削表面粗糙度随砂轮粒度的增大而增大。采用相同粒度砂轮磨削,切深较小时,超细硬质合金磨削表面粗糙度随切深的增加而增大,当切深增大到一定值后,磨削表面粗糙度值逐渐降低。  相似文献   

7.
采用直径为180mm单层电镀CBN砂轮在不同磨削参数下对AISI 1045钢进行高速缓进给窄深槽磨削试验,通过三维表面轮廓仪(SM-100)、维氏硬度计(HMV-G21ST)和金相显微镜(MM-4XCC)检测窄深槽侧面形貌、表面粗糙度、槽底硬度及金相组织等表面参数,分析了砂轮线速度、工件进给速度和窄深槽深度等磨削参数对表面完整性的影响.试验结果表明:随着工件进给速度的增大和窄深槽深度的增加,槽侧面粗糙度值增加,表面质量变差,且槽底硬度增大;砂轮线速度的增加有助于降低表面粗糙度值,提高表面质量;工件切入端与切出端,槽侧面磨痕较深,表面质量较差,中间区域具有较好的表面质量,同时由于温度的影响,与中间区域相比,切入端与切出端槽底硬度较低;槽底表面未出现组织转变,槽底亚表层发生塑性变形,晶粒细化且分布较为集中.  相似文献   

8.
采用树脂结合剂金刚石砂轮磨削氧化锆陶瓷套圈内圆,分析了各磨削工艺参数包括砂轮的粒度、线速度(vs)、轴向振荡速(fa)和径向进给速度(fr)对氧化锆套圈内表面粗糙度的影响。利用正交实验,通过回归分析得到加工表面粗糙度的回归方程。实验结果表明,金刚石砂轮的粒度是对加工表面粗糙度影响最大的因素,随着砂轮粒度的减小,加工表面粗糙度呈明显下降的趋势,而砂轮的线速度、轴向振荡速和径向进给速度的变化对加工表面粗糙度的影响均不显著。  相似文献   

9.
基于立铣刀螺旋槽的加工原理,根据安装参数确定砂轮磨削螺旋槽的磨削接触区;分析螺旋槽磨削接触区内砂轮与工件的等效直径和有效速度,发现立铣刀螺旋槽磨削既有外圆磨削的特点也有内圆磨削的特征。考虑硬质合金工件材料塑性隆起和砂轮速度与工件速度之间夹角对表面粗糙度的影响,建立立铣刀螺旋槽磨削表面粗糙度计算模型,分析砂轮直径、砂轮速度和工件进给速度对磨削表面粗糙度的影响。在五轴联动数控工具磨床上使用金刚石平行砂轮进行螺旋槽磨削试验。使用超景深显微镜对立铣刀螺旋槽磨削表面形貌进行分析,使用白光干涉仪测量螺旋槽磨削表面粗糙度大小。试验结果验证了硬质合金立铣刀螺旋槽磨削表面粗糙度计算模型的正确性。该模型为其他整体式刀具螺旋槽磨削表面粗糙度的计算提供了理论参考。  相似文献   

10.
针对核主泵关键部件材料镍基碳化钨涂层,采用三种磨粒粒度金刚石砂轮进行平面磨削试验,研究工艺参数、磨粒粒度对涂层材料磨削力、表面粗糙度和表面残余应力的影响规律。实验结果表明:不同粒度砂轮磨削时,随着磨削深度和工件进给速度增加,法向磨削力和切向磨削力均逐渐增大,表面粗糙度值呈现先增大、后减小再增大的趋势,平行和垂直磨削方向的表面残余压应力逐渐增大,且垂直磨削方向应力值更大。综合考虑磨削力、表面粗糙度、磨削表面残余应力和磨削加工效率,600目砂轮具有较好的加工效果,其对应的优化磨削参数为:磨削深度为10μm,工件进给速度为8 m/min。  相似文献   

11.
硬质合金YG8高速磨削工艺试验研究   总被引:2,自引:1,他引:1  
采用树脂结合剂金刚石砂轮,对硬质合金YG8进行了高速磨削工艺试验研究,测得了不同砂轮线速度、磨削深度和工作台速度条件下的磨削力和表面粗糙度,并对磨削的表面形貌进行了观测,揭示了硬质合金YG8高速磨削的材料去除机理。试验结果表明:将高速磨削技术应用于硬质合金材料的加工是一种切实可行的加工方法,能得到较好的表面质量并提高加工效率。随着砂轮线速度的增加,或者工作台速度和磨削深度的减小,磨削的最大未变形切屑厚度减小,磨削力减小,材料的比磨削能增加,使得工件的加工表面质量得到改善。  相似文献   

12.
A grindability study of chopped strand mat glass fiber reinforced polymer laminates (CSM GFRP) has been carried out to evaluate the effects of abrasive types on grinding force ratio and area roughness at varying grinding parameters such as speed, feed and depth of cut. Performances of alumina (Al2O3) and cubic boron nitride (CBN) wheels were compared. Both wheels delivered the maximum grinding force ratios at low speed, high feed and low depth of cut. Alumina wheel produced smoother surface when grinding at low speed, low feed and high depth of cut. CBN wheel, on the other hand, gave smoother surface at high feed and low depth of cut conditions, regardless of speed. With CBN wheel, it is likely that a single grinding condition exists that maximizes grinding force ratio and minimizes area roughness. The findings indicate that CBN wheel exhibited higher grinding force ratio than alumina grinding wheel in general. CBN grinding wheel also outperformed alumina grinding wheel by producing smoother ground surface in most cases.  相似文献   

13.
为避免不锈钢磨削中发生砂轮堵塞,减轻磨削烧伤的程度,提高加工效率,优化加工工艺,对不锈钢进行超高速磨削试验研究。在高速/超高速磨削条件下,研究了不同砂轮线速度、工件进给速度和进给量对不锈钢磨削的磨削力、表面粗糙度和表面形貌的影响作用,并检测了不同工况下的砂轮表面状态。研究结果表明,不锈钢在超高速磨削状态下,选择合理的工作台速度和磨削深度能有效提高加工效率,同时又能保证磨削质量。

  相似文献   

14.
超高速磨削工艺对45#钢表面磨削温度影响实验研究   总被引:1,自引:0,他引:1  
在45#钢超高速磨削工艺实验的基础上,分析了砂轮线速度、磨削深度、工作台速度对工件表面磨削温度的影响,揭示了表面磨削温度随着砂轮线速度的提高而呈现先升高后下降的趋势,以及随磨削深度的增加而升高,随工作台速度的提高而下降的规律和机理,从而指导磨削参数的优化设计。  相似文献   

15.
在高速超高速磨削工艺实验基础上,分析了砂轮线速度、切削深度、最大未变形切屑厚度等工艺参数对45#钢、40Cr两种材料磨削表面粗糙度的影响,揭示了在高速超高速磨削条件下用CBN砂轮进行磨削时,表面粗糙度值随砂轮线速度的提高而减小,随切削深度及最大未变形切屑厚度增加而加大的变化规律和机理。为特定材料在高速超高速磨削条件下的加工提供了参考依据。  相似文献   

16.
孔令叶  阎秋生 《工具技术》2017,51(8):120-123
对曲面磨削表面粗糙度成型原理进行了分析,得出曲面磨削时其表面粗糙度由磨粒划痕和砂轮两步距间的残留高度构成。探讨了其分布均匀性的原理,揭示了各参数对其均匀性的影响。通过砂轮进给速度的变速控制,可以降低约60%的表面粗糙度波动率。根据理论分析可知,在加工凹曲面时,其理论残留高度值约为凸曲面的两倍。实际加工时,采用较小的砂轮进给步距或砂轮圆弧半径可达到凸曲面的表面粗糙度效果。  相似文献   

17.
王艳  徐九华  杨路 《光学精密工程》2015,23(7):2031-2042
分析了高速精密磨削9CrWMn冷作模具钢的机理,采用DEFORM软件对高速磨削模具钢9CrWMn过程进行了磨削力仿真。使用高精密高速平面磨床对模具钢9CrWMn进行了高速精密磨削试验,并在线测量了多种工况下的磨削力。结果表明:在其他两组工艺参数不变时,随着工件进给速度增加,磨削力特别是法向磨削力会增大近45%;法向磨削力和切向磨削力随着砂轮的线速度上升而下降,法向磨削力下降近33%;磨削深度对磨削力影响较大,大的磨削深度对法向磨削力的影响尤其显著,可使法向磨削力增大近100%。分析了磨削工艺参数对比磨削能的影响规律,结果显示:随着磨削深度和工件进给速度的增大,比磨削能呈比较明显的下降趋势,符合磨削加工中的尺寸效应;随着砂轮线速度的增大,比磨削能呈上升趋势。最后,对高速磨削前后工件表面的微观形貌进行了对比分析,磨削力试验结果和仿真理论分析相一致。  相似文献   

18.
利用信噪比试验设计法和二次回归设计技术,对平面磨削中砂轮转速、工件速度、径向进给量及砂轮粒度等因素对表面粗糙度的影响规律进行了分析,各因素对表面粗糙度的影响由大到小依次为砂轮粒度、径向进给量、砂轮转速和工件速度。同时建立起表面粗糙度的回归预测模型,并以F检验法对其进行检验,回归预测模型的显著性水平为0.01,回归效果良好。  相似文献   

19.
根据正交试验确定了影响高速钢材料的粗金刚石砂轮轴向进给数控磨削表面粗糙度值Rα的最主要因素是进给速度Vfo。在此基础上,进行进给速度巧单因素数控磨削实验,对数控磨削后表面粗糙度值进行了分析。分析结果表明,要用粗金刚石砂轮进行轴向精密加工,采用具有较多的磨粒数且磨粒均匀分布在轴向和周向的砂轮和采用较低的进给速度对精密加工更有利。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号