首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
应力松弛下橡胶O形密封圈的有限元分析   总被引:2,自引:2,他引:0  
建立了橡胶O形密封圈与沟槽接触的平面轴对称非线性有限元分析模型,利用MSC.Marc有限元软件,分析了O形密封圈安装过程中,不同压缩率对接触应力的影响以及考虑应力松弛过程下使用的应力分布.数值结果表明,在没有油压下,应力松弛前后O形密封圈接触界面上的应力分布呈抛物线;应力松弛后,O形密封圈中的最大接触应力有明显降低,在200 s内应力衰减较快.在应力松弛1年并施加油压后,接触界面上的应力分布变化较大,但最大接触应力仍都大于油压,该O形密封圈使用可靠.  相似文献   

2.
橡胶O形密封圈在高温工况下会发生应力松弛并导致密封失效。基于橡胶黏-超弹本构模型,利用有限元软件ABAQUS建立橡胶O形密封圈与沟槽接触的非线性有限元模型,分析O形密封圈在不同压缩率、不同油压、不同温度下的应力松弛情况及应力分布。结果表明:接触界面上的接触应力分布近似呈抛物线;O形密封圈应力在初期先急剧衰减,而后逐渐缓慢降低;压缩率和油压对应力松弛影响不大,但油压太大会降低密封可靠性;温度升高使应力松弛速率明显增大,并使最终应力降低,降低密封的可靠性。  相似文献   

3.
为解决给水泵油封装置中O形圈因密封失效而引起泄漏的问题,利用有限元法对密封圈的大变形、超弹性进行非线性接触分析。首先建立密封圈与转动环沟槽之间的轴对称模型,分析O形圈在不同压缩率、不同轴向压力下的应力分布规律,进而对油封装置结构改进,最后利用试验台位测试油封的密封性能。结果表明: O形密封圈压缩率越大主接触面峰值应力越大,侧接触面应力基本不变;密封圈轴向压力的增加,接触应力也急剧上升,侧面接触应变较大,但工况内无胶料“挤出”发生;改进后双密封O形圈动环结构密封可靠性、安全性更高,在不同工况下进行密封性能试验,油封装置无泄漏,为油封密封圈选型以及避免给水泵实际运行中出现“滴、漏”现象具有一定的指导意义。  相似文献   

4.
O形橡胶密封圈尺寸公差对密封性能的影响   总被引:2,自引:0,他引:2  
借助于大型有限元分析软件ANSYS,建立了橡胶O形密封圈与沟槽接触的非线性有限元分析模型,分析了橡胶O形密封圈的尺寸公差对密封性能的影响,以及密封圈的内径伸长率和压缩变形率改变时,接触面上最大接触应力的变化情况,从而为进一步可靠设计、优化橡胶O形圈提供了理论依据。  相似文献   

5.
为了提高水力加压器密封性能,设计一种由滑环与O形密封圈组成的组合密封;利用流体压力渗透载荷的加载方法对密封结构进行有限元仿真,得到单因素滑环结构参数对密封性能的影响规律;利用正交试验,分析多因数滑环结构参数综合作用对活塞密封性能的影响。研究结果表明:滑环沟槽底部厚度、滑环侧边宽度、滑环高度、活塞单边径向密封间隙对动密封面接触压力影响依次减弱,新型密封结构选择滑环高度6.5 mm、滑环侧边宽度2.65 mm、滑环沟槽底部的厚度0.7 mm、单边径向间隙0.25 mm时,其最大接触应力比常规O形密封圈结构提高了245%;新型密封结构中的动密封面接触应力比常规O形密封圈结构有了显著的提高,提高了水力加压器的密封性能。  相似文献   

6.
超高液压下O形橡胶密封圈的有限元分析   总被引:1,自引:0,他引:1  
利用ABAQUS软件对O形橡胶密封圈在超高液压下的应力和接触压力进行了有限元分析,探讨了不同压力下O形橡胶密封圈的VonMises应力和接触压力的变化规律,分析了压缩率及密封间隙对最大VonMises应力与最大接触压力的影响。结果表明在超高液压下,O形圈VonMises应力主要集中在液压缸与活塞杆的密封间隙区域,且最大VonMises应力随着密封间隙的增加而显著上升;压缩率对初始应力和接触应力影响较大,适当提高压缩率能够提供密封的可靠性,O形圈最大接触应力随着油压的增加呈近似线性变化。  相似文献   

7.
为了研究沟槽形状对O形橡胶密封圈密封性能的影响,利用有限元分析软件ANSYS对装配在燕尾沟槽中的O形橡胶密封圈进行建模,分析其在不同压缩率和介质压力下的变形与受力情况,获得对应的最大Von Mises应力、最大剪切应力、最大接触压力的分布情况,并与矩形槽的情况进行对比。结果表明:在不同压缩率和不同介质压力时,O形密封圈与燕尾沟槽配合使用时的最大Von Mises应力、最大接触压力均大于与矩形槽配合使用时,特别是在介质压力较高时,说明与燕尾沟槽配合使用时O形密封圈密封效果更好。  相似文献   

8.
以轴用动密封Yx形密封圈为研究对象,运用有限元法建立二维轴对称模型,分析其在往复单向动密封中的密封性能,并对其不同工况下的力学性能进行研究。结果发现:动密封中Yx形密封圈主接触面最大接触应力、内部Von Mises应力的大小随时间而波动变化,且其作用位置随往复运动方向的改变而变化;主接触面平均摩擦力与介质压力、摩擦因数和密封间隙成线性关系,且几乎不因速度而变化,但最大摩擦力在各影响因素下却表现出了非线性特征;0.05~0.35 m/s范围内,速度对剪切应力影响较小;介质压力、摩擦因数、密封间隙对内行程的剪切应力影响较大;外行程在密封圈的失效过程中起主要作用;密封圈与轴接触的表面、内唇唇口、沟槽以及根部为易破坏的部位。仿真结果与实际失效特征吻合。  相似文献   

9.
针对深海高压环境密封壳体用O形密封圈研究不足问题,对O形密封圈在不同压缩率、不同硬度、高介质压力下接触应力大小及应力分布情况等方面进行了研究。对判断O形密封圈失效的方法进行了归纳,提出了基于失效准则判断O形密封圈在深海中所能承受最大压力的方法,利用非线性有限元分析方法进行了分析及预测。研究结果表明:压缩率及材料硬度对O形密封圈的密封能力有重要影响,介质压力的变化会引起O形密封圈内部应力分布的变化;材料硬度为90HA的丁腈橡胶O形密封圈在压缩率为21%的工况中,可以满足5 000 m水深的密封要求。  相似文献   

10.
研究原油高温热采工具 O 形橡胶密封圈在高温高压下的密封特性。借助于大型有限元分析软件 ANSYS,建立 O 形橡胶密封圈及其边界的二维轴对称有限元模型,研究油压、装配间隙和摩擦因数对密封面最大接触应力、剪切应力和 Von Mises 应力的影响,并采用热应力耦合分析方法,分析温度对 O 形密封圈密封性能的影响。结果表明:摩擦因数对应力影响不大,而油压和装配间隙对应力影响很大,过大的装配间隙会造成 O 形橡胶密封圈最大接触应力下降和最大剪切应力上升,造成密封失效;当温度升高时,密封圈最大剪切应力和接触应力相应减小,而最大 Von Mises 应力明显减小,因此应使 O 形密封圈在适当的温度下工作,以确保密封的可靠性。  相似文献   

11.
针对双浮动密封橡胶O形圈接触过程应力的变化,建立双浮动密封二维轴对称非线性接触模型;利用有限元方法对O形圈进行应力计算,分析O形圈在不同压缩率、不同浮封座和浮动环的斜面角度及不同摩擦因数下的应力变化情况。结果表明:橡胶O形圈各应力最大值随压缩率的增加呈线性增大, O形圈内高应力分布区域随压缩率的增加而增大,并由接触部位附近向其中间位置扩散;摩擦因数对O形圈各应力影响很小,而浮封座和浮动环的斜面角度对O形圈等效应力和接触压力影响较大;随着浮封座斜面角的增加,等效应力总体趋于减小,接触压力先减小后缓慢增加,而剪切应力整体变化较小;随着浮动环斜面角的增加,等效应力、接触压力呈递增趋势,剪切应力曲线上下波动,但整体变化不明显。确定双浮动密封浮封座和浮动环斜面角度最优值,为双浮动密封结构设计提供了指导。  相似文献   

12.
为研究浮动油封O形圈初始安装变形的影响,基于Ansys Workbench平台建立浮动油封的二维轴对称有限元模型,并考虑O形圈初始安装变形进行非线性接触分析,研究不同油压、安装间隙、硬度对于O形圈的应力、接触压力、接触摩擦力以及浮封环端面支反力的影响。结果表明:考虑安装过程的情况下,O形圈并不是位于浮动油封中相对居中的位置,而是在浮动油封中部偏上位置,且O形圈的最大von Mises应力相比不考虑O形圈安装过程时更大,因此考虑O形圈安装过程更符合实际情况;油压升高造成最大von Mises区域变小变窄会加大裂纹失效的风险;最大接触摩擦力集中于浮封环端面处,且接触长度随油压增大不断增加;浮封环端盖y方向作用力的增速远超x方向作用力的增速;在恒定油压的情况下,应力随安装间隙的减小而增大,应力随硬度的增加而增大;浮动油封在2 MPa油压范围内,最大接触压力均大于油压,能保证浮动油封的自密封性。  相似文献   

13.
O形圈密封沟槽棱圆角有利于O形圈和挡环的安装,防止O形圈或挡环被锐边划伤而影响密封可靠性,且沟槽棱圆角半径对O形圈密封性能也有较大影响.以沟槽棱圆角半径为变量,利用有限元分析软件建立有、无挡环配合使用2种O形圈密封结构的二维轴对称模型,分析在35 MPa介质压力下静密封和动密封2种密封状态下O形圈密封性能,比较不同半径...  相似文献   

14.
应用ABAQUS软件建立YO组合密封的有限元模型,分别比较Y形组合密封与Y形密封、聚氨酯和丁腈橡胶2种材料的Y形组合密封,在密封区域的静态接触压力和Mises应力分布,分析O形圈截面直径对2种材料Y形组合密封性能的影响规律。结果表明:Y形组合密封在密封区域的接触压力和Mises应力均大于相同规格、材料的Y形圈,且外行程时Y形组合密封接触压力增大更明显,应力分布更均匀,验证了Y形组合密封的双重密封和改善根部抗撕裂的特性;在O形圈截面直径相同的情况下,聚氨酯组合密封外行程与内行程的最大接触压力差值远远高于丁腈橡胶组合密封,而丁腈橡胶组合密封Mises应力分布更均匀;随着O形圈截面直径的增大,聚氨酯组合密封的最大接触压力呈现先增大后减小的趋势,丁腈橡胶组合密封呈现逐渐减小的趋势,但两者的Mises应力均呈现逐渐增大的趋势,且丁腈橡胶组合密封增大更显著。研究结果为不同工作条件下密封件的选择提供了参考依据。  相似文献   

15.
水下机器人耐压壳体O形圈密封性能有限元分析   总被引:1,自引:0,他引:1  
由于水下机器人工作环境的特殊性,对其耐压壳体的密封性能有严格要求,而其O形密封圈在其中起到至关重要的作用。文中基于橡胶密封结构的非线性有限元理论,应用有限元分析软件ABAQUS建立O形密封圈的二维轴对称模型,对某水下机器人耐压壳体中O形密封圈在设计条件下的受力情况及特性进行了分析,得到了在设计水深条件下的O形密封圈变形情况、应力分布及最大接触压力。结果表明:密封面上最大接触压力大于外部海水压力。通过试验验证了某耐压壳体密封设计的可靠性。  相似文献   

16.
针对双浮动端面密封的结构,建立密封二维轴对称非线性接触模型,提取浮动密封环谷半径和锥面角两个关键参数,利用有限元方法计算并分析这两个参数和橡胶O形圈压缩率对密封性能的影响。结果表明:随着浮动环谷半径和锥面角的增大,O形圈von Mises应力、接触压力、密封端面相对变形及轴向力相应增大;锥面角对以上性能参数的影响随着谷半径的增大而显著增加;轴向力同O形圈压缩率成正比,且增幅随着压缩率的增大而增大;浮动环端面产生由内径向外径处呈发散型的变形。通过设计浮动密封轴向力测量装置,实验验证有限元计算模型具有较好的可靠性。  相似文献   

17.
柔性钻杆已成为老井改造和增产提效的重要工具,为保障柔性钻杆球面密封的可靠性,对设计的一种O形圈球面密封结构开展数值模拟和试验研究。基于ANSYS有限元分析软件探究密封间隙、流体压力、转动角度以及有无挡环等因素对O形圈von Mises应力、接触应力、有效密封宽度等密封特性参数的影响。结果表明:流体压力与密封间隙存在耦合关系,流体压力越高要求密封间隙越小;往复转动会导致最大von Mises应力和最大接触应力升高,且随着密封间隙增大而影响加剧;挡环的安装可有效防止在密封间隙和流体压力较大时O形圈挤入缝隙。通过室内试验验证了O形圈球面密封结构的可靠性,为现场应用提供了理论依据和技术支撑。  相似文献   

18.
为了研究O形圈的应力松弛规律及其在应力松弛条件下的密封性能,通过O形圈应力松弛试验,得到其轴向载荷衰减规律,将这些载荷值导入ANSYS中计算出O形圈的接触压力,并利用逾渗理论计算出O形圈密封面的泄漏率。研究结果表明:应力松弛条件下,O形圈上的轴向载荷随时间缓慢下降,初始压力越大轴向载荷衰减得越快,总体来看O形圈上的轴向载荷随时间遵循F_z=Aexp(-t/B)+C的衰减规律;施加的载荷越大O形圈与其接触面各点的接触压力越大,且不同载荷下O形圈与其接触面各点的接触压力均大于介质压力;应力松弛条件下O形圈密封面的泄漏率极小。试验、仿真计算及理论分析均表明,O形圈在应力松弛条件下具有良好的密封性能,证明了O形圈作为静密封的可靠性。  相似文献   

19.
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators,especially in high parameter hydraulic systems.Only elastic deformations of hydraulic reciprocating seals were discussed,and hydrodynamic effects were neglected in many studies.The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals,and few of these models had been simultaneously validated through experiments.By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal,a numerical fluid-solid interaction model consisting of fluid lubrication,contact mechanics,asperity contact and elastic deformation analyses is constructed with an iterative procedure.With the SRV friction and wear tester,the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal.The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition.The experimental result is used to validate the fluid-solid interaction model.Based on the model,The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction,mixed lubrication and full film lubrication conditions,including of the contact pressure,film thickness,friction coefficient,liquid film pressure and viscous shear stress in the sealing zone.The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal,and can also be widely used to study other hydraulic reciprocating seals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号