首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
Li B  Zhang PL  Wang ZJ  Mi SS  Liu DS 《ISA transactions》2011,50(4):599-608
This paper presents a novel signal processing scheme, named the weighted multi-scale morphological gradient filter (WMMG), for rolling element bearing fault detection. The WMMG can depress the noise at large scale and preserve the impulsive shape details at small scale. Both a simulated signal and vibration signals from a bearing test rig are employed to evaluate the performance of the proposed technique. The traditional envelope analysis and a multi-scale enveloping spectrogram algorithm combining continuous wavelet transform and envelope analysis (WT-EA) are also studied and compared with the presented WMMG. Experimental results have demonstrated the effectiveness of the WMMG to extract the impulsive components from the raw vibration signal with strong background noise. We also investigated the classification performance on identifying bearing faults based on the WMMG and statistical parameters with varied noise levels. Application results reveal that the WMMG achieves the same or better performance as EA and WT-EA. Meanwhile, the WMMG requires low computation cost and is very suitable for on-line condition monitoring of bearing operating states.  相似文献   

2.
基于包络谱分析的滚动轴承故障诊断分析   总被引:2,自引:0,他引:2  
介绍了包络谱分析方法的基本原理,它是一种基于滤波检波的振动信号处理方法,也是诊断设备零件损伤故障的一种有效的手段,尤其对初期故障和信噪比比较第的故障信号,识别能力很强。重点分析了包络谱分析方法在轴承故障诊断中的应用。通过对滚动轴承故障诊断的实例分析,验证了包络谱分析运用于诊断设备零件损伤故障所取得的效果。  相似文献   

3.
基于ITD-形态滤波和Teager能量谱的轴承故障诊断   总被引:2,自引:0,他引:2       下载免费PDF全文
针对强背景噪声下滚动轴承振动信号故障特征信息难以提取的问题,提出了结合固有时间尺度分解(ITD)-形态滤波和Teager能量谱的滚动轴承故障特征提取与诊断方法。首先对滚动轴承振动信号采用ITD方法分解,得到若干个固有旋转分量;考虑到噪声主要分布在高频段,取前2个高频的固有旋转分量进行形态滤波,并将滤波后的信号与剩余固有旋转分量重构;对重构信号计算Teager能量算子并绘制Teager能量谱,从Teager能量谱中可以识别出故障特征。将本方法应用于滚动轴承的内圈故障和外圈故障诊断,结果表明ITD-形态滤波可以有效去除振动信号中的背景噪声并保留冲击特征,Teager能量谱可以直观并准确显示出故障特征。  相似文献   

4.
Yu Yang  Dejie Yu  Junsheng Cheng 《Measurement》2007,40(9-10):943-950
Targeting the modulation characteristics of roller bearing fault vibration signals, a method of fault feature extraction based on intrinsic mode function (IMF) envelope spectrum is proposed to overcome the limitations of conventional envelope analysis method. By utilizing the proposed feature extraction method, the disadvantages of conventional envelope analysis method such as the chosen of central frequency of filter with experience in advance, looking for spectral line of fault characteristic frequencies in envelope spectrum and so on could be overcome. Firstly, the original modulation signals are decomposed into a number of IMFs by empirical mode decomposition (EMD) method. Secondly, the ratios of amplitudes at the different fault characteristic frequencies in the envelope spectra of some IMFs that include dominant fault information are defined as the characteristic amplitude ratios. Finally, the characteristic amplitude ratios serve as the fault characteristic vectors to be input to the support vector machine (SVM) classifiers and the work condition and fault patterns of the roller bearings are identified. Since the recognition results are available directly from the output of the SVM classifiers, the proposed diagnosis method provides the possibility to fulfill the automatic recognition to machinery faults.  相似文献   

5.
针对国内外滚动轴承种类繁多、编号复杂以及轴承故障特征频率难以获得的现状,利用Power Builder强大的数据库功能,设计出一套数据完整、查询快捷方便,并与瑞典SKF公司的轴承故障特征频率参数相吻合的数据库系统,同时举例说明该系统可广泛应用于设备状态监测、故障诊断和预知维修领域。  相似文献   

6.
以滚动轴承在正常、内圈故障、外圈故障和滚动体故障四种工况下的振动信号为研究对象,采用小波包变换的方法提取信号的能量熵,构成振动信号的特征向量。在此基础上采用支持向量机进行故障模式识别,建立支持向量机模型需要选择适当的核函数及相关参数,使用径向基核函数,需要设置的参数为核函数的宽度和误差惩罚系数,分别结合传统的网格搜索,遗传算法,粒子群算法优化支持向量机参数以提升分类性能。试验结果表明,采用优化后的支持向量机进行故障诊断可以大大提高诊断精度。  相似文献   

7.
研究滚动轴承不同状态下的振动信号,使用小波包变换提取信号各频带的能量熵,作为轴承故障的特征,然后使用支持向量机智能诊断轴承不同故障。传统单通道信号诊断方法容易造成误诊,全矢小波包能量熵融合了振动信号双通道的信息,能更准确地反映故障的特征。实验结果表明,采用全矢小波包能量熵比传统单通道方法有更高的诊断精度。  相似文献   

8.

Fault feature extraction of the rolling bearing under strong background noise is always a difficult problem in bearing fault diagnosis. At present, most of the research focuses on weak signal extraction under Gaussian white noise and has certain practical significance. However, the noise in engineering is often complex and changeable, Gaussian white noise cannot fully simulate the actual strong background noise. Poisson white noise is a type of typical non-Gaussian noise, which widely exists in complex mechanical impact. It is of great significance to study the weak fault feature extraction of a faulty bearing under this type of noise. At the same time, variable speed conditions occupy most rotating machinery speed conditions. Non-stationary vibration signals make it difficult to extract fault features, and the frequency spectrum ambiguity will occur because of speed fluctuation. To solve the above problems, a method of weak feature extraction of a faulty bearing based on computed order analysis (COA) and adaptive stochastic resonance (SR) is proposed. Firstly, by numerical simulation, the non-stationary fault characteristic signal corrupted with strong Poisson noise is transformed into a stationary signal in the angle domain by COA. Secondly, the influence of the parameters of the pulse arrival rate and noise intensity of Poisson white noise on the optimal SR response in the angle domain are studied, and the influence of the parameters of Poisson white noise on the fault feature extraction is given. Then, adaptive SR method is used to extract and enhance fault feature information. Finally, the effectiveness of this method in weak fault characteristic signal extraction under strong Poisson noise is verified by experiments. Numerical simulation and experimental results verify the effectiveness of the proposed method in bearing fault diagnosis under strong Poisson noise and variable speed conditions.

  相似文献   

9.
神经网络是一种具有非线性映射能力强以及自学习、自组织、自适应等优点的智能方法,非常适合于滚动轴承的故障诊断。针对滚动轴承是机械设备重要的易损零件之一,大约有30%的故障是由轴承损坏引起的,提出了基于神经网络的滚动轴承故障诊断方法。以滚动轴承小波分解后的能量信息作为特征,通过神经网络作为分类器对滚动轴承故障进行识别、诊断。实验表明,该方法对于滚动轴承的故障诊断具有良好的效果和应用价值,并可方便地推广到其他类似的诊断领域。  相似文献   

10.
周浩  贾民平 《机电工程》2014,31(9):1136-1139
针对直接运用快速傅里叶变换(FFT)无法有效提取具有非线性非平稳特性的滚动轴承振动信号故障特征频率的问题,提出了一种基于经验模式分解和峭度指标的Hilbert包络解调方法.首先对滚动轴承的振动信号进行了经验模式分解(EMD),得到了包含轴承故障特征信息的各阶本征模态函数(IMF),再计算各阶IMF的峭度值,选取了峭度值较大的几阶IMF分量重构信号,并对重构信号进行了Hilbert包络解调分析,从而获得了滚动轴承的准确故障特征信息.分别对仿真模拟信号和实际滚动轴承发生内圈故障的振动信号进行了分析,清晰地得到了故障特征频率.研究结果表明,利用融合EMD、峭度系数和Hilbert包络解调的诊断方法能够快速、准确地提取滚动轴承的故障特征频率,从而可以对滚动轴承进行有效地故障诊断.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号