共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
针对在滚动轴承故障诊断中,传统单通道原始信号存在输入信息缺失,经方法处理后导致诊断结论不一致的问题,将全矢谱分析技术和频率切片小波变换(Frequency Slice Wavelet Transform,FSWT)相结合,提出了全矢FSWT的方法进行故障检测与诊断。运用FSWT分析同源相互垂直的双通道原始样本,并选择合适的时频切片区间进行包络重构,接着对重构后的信号进行全矢融合,观察提取故障数据的特征频率以进行故障诊断。实验结果表明,该方法既能较好地提取故障特征信号,又能准确有效地诊断故障类型。 相似文献
3.
4.
提升小波变换可以通过设计预测系数和提升系数获得具有某种特性的小波基函数,因而对信号的适应能力更强。介绍了提升小波变换的原理,提出了一种自适应阈值小波去噪方法,并将其应用于轴承故障诊断中。 相似文献
5.
张俊鹏;杨志勃;陈雪峰;翟智;刘一龙 《轴承》2020,(7):54-60
以轴承为例,对卷积神经网络在故障诊断领域中的可解释性进行了探讨,采用Grad-CAM方法,基于可视化的角度建立了神经网络的重点激活区域与目标类别之间的联系,并且利用凯斯西储大学的轴承数据库,分别从时域和频域的角度对LeNet,AlexNet和ResNet-18这3种应用较广的卷积神经网络结构进行了验证,结果表明,卷积神经网络在轴承故障诊断领域中对于样本的分类识别与人为的认知规律存在基本的相似性,可以为卷积神经网络在故障诊断领域的工程应用提供参考。 相似文献
6.
故障样本获取困难导致的训练样本不均衡严重影响故障诊断模型的可用性及准确率,因此提出一种基于自适应辅助分类器生成式对抗网络的故障样本生成模型,通过度量判别器与生成器的相对性能自适应地调节生成器损失值,使训练收敛更快、生成数据质量更好。将所提方法、辅助分类器生成式对抗网络方法生成的数据,以及未经处理的试验原始数据作为BP分类模型的输入数据进行试验,结果表明所提方法生成数据训练的模型更优。所提方法与1D-CNN、e2e-LSTM、CFVS-SVM和FFT-CNN等方法的对比结果表明,所提方法的故障诊断准确率、信息处理时间均最优。 相似文献
7.
数学形态学滤波算法具有很强的抑制脉冲干扰的能力,但滤除白噪声的能力却不及小波算法。针对这一不足,在对信号进行形态滤波之前先进行小波消噪,再进行HHT分析提取故障特征频率。通过仿真和示例证实了该方法可以有效地消除信号干扰噪声,提取轴承故障特征,达到对滚动轴承故障诊断的目的。 相似文献
8.
9.
10.
杜小磊;陈志刚;张楠;许旭 《轴承》2019,(11):60-67
针对传统滚动轴承故障诊断方法过度依赖专家经验,故障特征提取及选取困难的问题,提出一种基于集成深度小波神经网络和深度小波支持向量机的滚动轴承故障诊断方法。首先,利用不同的小波函数设计不同的改进小波自编码器,并构造相应的深度小波神经网络;然后,将轴承振动信号输入各深度小波神经网络进行无监督特征学习并进行微调;最后,将每个深度小波神经网络的顶层特征融合,输入深度小波支持向量机分类器实现对轴承故障的自动识别。试验结果表明,该方法能够对滚动轴承进行多工况及多种故障程度的有效识别,特征提取能力和识别能力优于浅层人工神经网络、支持向量机等传统方法以及深度信念网络、深度稀疏自编码器等深度学习模型。 相似文献
11.
12.
振动信号模型在滚动轴承故障诊断中的应用 总被引:1,自引:0,他引:1
为了克服传统故障诊断流程的缺点,提出一种基于EMD(Empirical Mode Decomposition)和振动信号模型的滚动轴承故障诊断方法,首先根据滚动轴承振动机理和振动信号的特征,建立了滚动轴承在正常和各种典型故障时的信号模型,然后采用EMD对原始振动信号做分解,并以峭度为依据进行信号重构,最后计算重构信号与不同信号模型之间的相关系数,根据系数大小可准确判断故障类型。通过对实验平台信号和风力发电机组齿轮箱滚动轴承振动信号的分析,验证了该方法的有效性和实用性。 相似文献
13.
14.
15.
设计了一种便携式滚动轴承故障智能诊断系统,对系统的工作原理、硬件结构及软件技术进行了详细的描述。该诊断系统除具有“便携式”的特征外,还具有操作简便,测试、诊断与分析自动化、智能化等特点,适用于生产现场对滚动轴承故障进行快速、自动地诊断。 相似文献
16.
滚动轴承故障诊断机理研究 总被引:1,自引:0,他引:1
滚动轴承是常用机械组件,对其故障机理和诊断方法进行研究,能有效提高其安全性和可靠性。通过建立滚动轴承非线性动力学模型,计算出轴承故障振动响应。在模型计算结果中添加谐波分量和白噪声干扰,通过EEMD分解和峭度分析方法,抑制噪声干扰,突显故障特征信号。以深沟球轴承6205为例验证了故障诊断方法的有效性和动力学模型的正确性。首先建立非线性动力学模型,通过计算分析,揭示故障机理。利用基于EEMD的故障诊断方法,有效地突显故障信号,并验证动力学模型正确性。 相似文献
17.
针对轴承故障振动信号的非线性、非平稳特点及振动信号的强噪声背景,提出一种基于局部均值分解(Local Mean Decomposition,LMD)和灰色相似关联度的轴承故障诊断方法。首先对信号进行局部均值分解,得到若干个PF(Product function,简称PF)分量,再选取包含主要故障信息的PF分量进一步分析,并提取特征向量,然后通过计算标准故障模式与待识别样本的灰色相似关联度对轴承故障类型进行判断。利用该方法对试验轴承故障振动信号进行了分析,结果表明,基于LMD和灰色相似关联度方法能够有效地识别轴承运行状态,实现对轴承的故障诊断。 相似文献
18.
针对最小二乘支持向量机(LSSVM)实现过程中盲目选择核函数的现象,提出了一种基于核极化的多核LSSVM与EMD相结合的滚动轴承故障识别算法。首先,对滚动轴承振动信号进行EMD信号提取,进而提取故障特征向量;然后,根据多核构造原理,引入核极化确定基本核函数的组合权系数,构造多核函数;最后,结合多核函数与LSSVM,形成多核LSSVM学习器,进行故障识别。分析滚动轴承正常状态、内圈故障、外圈故障和滚动体故障的诊断实验结果,可知,EMD与多核LSSVM的故障识别算法可以准确地判断滚动轴承的工作状态和故障类型,并与SVM、LSSVM算法的诊断结果进行对照,表明所提算法的故障识别率更高。 相似文献
19.
20.
针对滚动轴承非平稳性的振动信号,提出了基于局部均值分解(Local Mean Decomposition,LMD)及马氏距离敏感阈值的滚动轴承故障诊断方法。首先,对振动信号进行LMD分解,获得一系列乘积函数(Production Function,PF),有的PF分量包含的故障信息多,有的包含的少,为此采用K-L散度法提取出主要PF分量;计算主要PF分量的时域参数指标,将其组合成特征向量,根据马氏距离提出马氏距离敏感阈值来表征不同的故障状态,取多组正常信号的特征向量均值作为标准特征向量,计算未知特征向量与标准特征向量的马氏距离敏感阈值,从而对其故障状态进行识别。试验结果表明,在不同转速下,该方法能够有效的对滚动轴承故障进行识别,且效果较EMD方法好。 相似文献