首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
添加纳米磁性微粒的润滑油摩擦学行为研究   总被引:1,自引:0,他引:1  
冯雪君  杨志伊 《润滑与密封》2007,32(3):122-124,127
用化学方法制备纳米MnZnFe2O4磁性微粒,在四球摩擦磨损试验机和立式万能摩擦磨损试验机上考察了MnZnFe2O4纳米磁性微粒作为润滑油添加剂的抗磨减摩性能及对磨损表面的修复作用,并用扫描电子显微镜观察分析了磨斑表面形貌。实验表明,MnZnFe2O4纳米微粒添加剂可以显著提高基础油的承载能力,减小磨斑直径;磁性颗粒有利于加强吸附在摩擦副表面上形成物理吸附膜,并在摩擦表面形成自修复膜,对磨损表面具有一定的修复作用。  相似文献   

2.
纳米级润滑膜的粘度修正与薄膜润滑计算   总被引:7,自引:0,他引:7  
根据纳米级润滑膜的试验测试结果提出薄膜润滑状态的粘度修正公式 ,并在此基础上建立了润滑膜厚度计算的数值计算方程。将该数值计算结果与弹流理论计算值和试验值进行对比表明 ,在薄膜润滑条件下 ,膜厚与速度和润滑油粘度的关系与弹流润滑计算结果相差较大 ,可明显看出弹流润滑向薄膜润滑的过渡 ,所提出的粘度修正式与试验结果则有较好的一致性  相似文献   

3.
通过试验和模拟的方法研究了不同压力条件下纳米铜颗粒添加剂在正十六烷基础油中的边界润滑行为。建立具有正弦曲面粗糙峰的边界润滑模型,采用分子动力学分别模拟了在25,50,100,200 MPa 4种压力下,含纳米铜颗粒与不含纳米铜颗粒时润滑油沿膜厚方向的密度分布。在润滑体系的上下固体壁面施加方向相反的剪切速度,计算出壁面原子与铜颗粒原子的应力、固液界面摩擦力、正压力和摩擦因数。采用微纳米划痕仪测量了含铜颗粒润滑剂的摩擦因数。结果表明:不同压力下两种润滑体系中的十六烷基础油均出现分层现象;纳米粗糙峰直接接触时,接触界面仍存在少量的正十六烷分子,且分子主链的排列方向与剪切方向相同;在200 MPa时铜颗粒使固体壁面的最大应力减小35.3%,提高了润滑体系的承载能力;不含铜颗粒润滑体系润滑油膜在50 MPa时破裂,含铜颗粒润滑体系润滑油膜在200 MPa时破裂;模拟计算的边界润滑状态下两种润滑体系的摩擦因数符合试验测量值。  相似文献   

4.
薄膜润滑的微极流体模拟   总被引:9,自引:0,他引:9  
基于向列相润滑分子作用下薄膜润滑的有序模型,利用微极流体(Micropolar fluids)理论分析薄膜润滑的润滑特性,探求薄膜润滑的基本规律。结果表明,薄膜润滑下的摩擦学性质介于弹性流体动力润滑和边界润滑之间,弹流理论不能很好预测膜厚随工况参数的变化情况,而微极流体理论结果和试验值有较好的一致性。薄膜润滑下有序分子的存在所起作用相当于提高润滑剂的粘度,能够增加润滑油膜的厚度从而增加承载能力。在薄膜润滑下必须考虑微粒分子的角动量矩守衡。  相似文献   

5.
建立了粉末状颗粒流润滑数学模型,考虑了颗粒流对润滑油流变黏度和密度的定量影响,计入了时变效应和热效应,对直齿轮进行了热弹流润滑研究,分析了不同质量分数的Mo S2对压力、膜厚和温度的影响,比较了质量分数为5%的人造金刚石、45钢、石墨和Mo S2颗粒对压力、膜厚和温度的影响,最后与现有实验结果进行了比较验证。结果表明,Mo S2颗粒质量分数增大,最大温度有所降低,最小膜厚也减小明显,节点接触中心瞬态温升减小显著;摩擦因数和硬度很低的石墨和Mo S2颗粒流具有较好的润滑效果,而摩擦因数和硬度高的人造金刚石和45钢颗粒流对润滑不利。  相似文献   

6.
有序薄膜润滑的速度场   总被引:3,自引:0,他引:3  
基于有序膜分子模型分析薄膜润滑中的速度场分布。薄膜润滑中有序膜分子的取向与向列相液晶分子有类似性,可用“向矢”表示。利用液晶理论可以分析薄膜润滑的速度场和润滑剂分子的取向,为分析薄膜润滑的特性提供依据。薄膜润滑区别于弹流润滑之处在于有序膜分子的弹性。粘弹比可以很好地表征这种差异。给出了不同粘弹比下的“向矢”角度和等效粘度的分布情况以及速度场的分布情况。  相似文献   

7.
针对厚度为纳米量级的液体正十六烷润滑膜,在球-盘点接触区内的分子排列结构开展实验研究。采用自行研制的在线测量系统,基于偏振拉曼光谱技术和相对光强膜厚测量技术分析处于不同润滑状态下的润滑膜分子排列结构和成因。结果表明:接触区内十六烷静态液膜的分子主链平行于固体表面,但在摩擦平面内的取向随机分布;较低速度下液膜分子排列结构与静态液膜相近;进入弹流润滑状态后,液膜分子排列结构呈无序的流体状态;在膜厚处于薄膜润滑阶段时,液膜分子有沿滚动速度方向取向的趋势。  相似文献   

8.
基于线接触热弹流脂润滑数值计算模型,结合单个球状固体颗粒的相关参数进行修正,建立考虑固体颗粒的线接触热弹流脂润滑的数值计算模型。采用多重网格法求解压力、膜厚和润滑油膜平均温升等润滑指标,得到不同颗粒速度、尺寸半径和中心位置下润滑油膜的压力、膜厚及温升分布并进行对比分析。结果表明:润滑脂中的固体颗粒容易造成油膜压力和温升的突变;随着固体颗粒向油膜中心的移动以及中心速度和颗粒半径的增大,压力、膜厚和平均温升整体分布都向入口区移动,其中颗粒半径对油膜压力、膜厚和平均温升的影响尤为显著。因此,在实际工作中应尽可能避免接触区内混入固体颗粒,尤其是半径相对较大的固体颗粒。  相似文献   

9.
薄膜润滑与润滑状态图   总被引:10,自引:0,他引:10  
讨论了速度、固体表面能、滑动比、润滑剂粘度和化学性能对薄膜润滑状态下油膜厚度的影响,以及弹流润滑向薄膜润滑转化条件和液体膜失效条件。进而提出了新的润滑状态划分准则以及不同润滑机理下膜厚的变化情况。  相似文献   

10.
为改善低黏度润滑油的摩擦磨损性能和成膜性能,选用纳米TiO2为添加剂,低黏度的聚α烯烃(PAO8、PAO10)和聚醚(PAG)作为基础油,在四球式摩擦磨损实验机上考察纳米TiO2添加剂对润滑油摩擦磨损性能的影响,利用点接触光弹流润滑试验台,研究不同速度、载荷下和纳米TiO2添加量对润滑油成膜性能的影响。结果表明:加入一定质量分数的纳米TiO2添加剂能够明显提高润滑油的抗磨减摩性能,在PAO8、PAG和PAO10基础油中分别加入质量分数0. 3%、0. 05%和0. 3%的纳米TiO2时,摩擦因数和磨斑直径均最小;综合比较摩擦因数和磨斑直径,纳米TiO2在PAO8基础油中表现出最好的抗磨减摩性能,摩擦因数减小了约54. 5%,磨斑直径降低了约10. 4%;随着卷吸速度的增加,润滑油的最小膜厚也逐渐增加,在相同卷吸速度下,与纯基础油相比,添加一定质量分数纳米TiO2添加剂的最小膜厚明显增加;随着纳米TiO2粒子添加量...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号