首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对目前精密数控机床热误差补偿问题,在基于主轴热误差测量系统的基础上,提出一种基于FCM聚类、多元线性回归的热误差补偿模型。通过对某卧式加工中心主轴恒定转速和变速工况下进行温敏点测量,建立关键温敏点与机床主轴热伸长的几何关系,通过补偿结果和切削试验表明该方法可以有效地降低主轴热伸长误差,提升零件的加工精度。  相似文献   

2.
主轴高速旋转时,主轴轴承内外环高速摩擦产生大量热量,这些热量使主轴轴向和空间姿态发生变化,产生热伸长、热倾斜和热漂移等形变,这些形变又引起刀具与工件相对位置发生变化,导致工件加工精度变差。采用五点测量法对这些形变量进行测量,生成主轴温升与热变形的误差曲线,再根据误差曲线编制数控系统可执行的C语言热补偿程序或PMC热补偿程序,数控系统根据温差变化自动更新外部机械原点偏移量,纠正刀具与工件的相对位置偏差,可有效减小主轴热变形引起的误差,提高工件加工精度。  相似文献   

3.
基于PMAC的数控车床主轴热误差补偿系统研究   总被引:1,自引:0,他引:1  
介绍了基于PMAC多轴运动控制器的数控车床主轴热误差软件补偿系统.通过对PMAC多轴运动控制卡进行二次开发,能够根据主轴上数字温度传感器测出的温度值,利用预先建立的热误差模型计算出误差补偿值,并通过PMAC卡将误差补偿值实时补正到刀具轨迹中,从而实现热误差的实时补偿,提高加工精度.  相似文献   

4.
热变形是影响磨床加工精度的主要因素,严重制约了机床精度的进一步提高。为了提高热误差预测的精度,提出了一种基于热传导和卷积神经网络的磨床主轴热误差预测方法。根据热传导理论推导出主轴表面和外部环境的温差和热变量的映射关系,揭示了材料热变形本质。然后,建立了以温差为输入和主轴热变形量为输出的神经网络热误差预测模型。该模型拥有4个神经网络层,分别对应温差、热能增量、时间变量以及热变形量。运用反向传播算法对该预测模型进行训练并计算模型参数。最后,基于SINUMERIK 840D数控控制器开发了一套磨床主轴热误差补偿系统,并在某一数控磨床上进行了验证。结果表明,通过主轴热误差补偿后,磨床的加工精度提升了41.7%,验证了本文提出的主轴热误差预测模型的有效性和可行性。  相似文献   

5.
为降低大型数控滚齿机热误差,提高滚齿机加工精度,基于西门子数控系统与自动编程系统,提出一种数控滚齿机热误差补偿方法与系统.针对某型号大型数控滚齿机,利用模糊聚类法对热误差补偿温度变量进行优选,采用多元回归—最小二乘法,建立了滚齿机滚刀和工件主轴中心距热误差与温度关系的补偿模型,并在该大型数控滚齿机加工过程中进行了热误差补偿试验.结果显示,滚齿机滚刀与工件主轴中心距热误差值降低了约77.89%,齿轮加工精度提高了1~2级,表明所建立的热误差补偿模型精度高,所提出的滚齿机热误差补偿方法与系统具有实用价值.  相似文献   

6.
开展了精密数控车床主轴系统热误差补偿的实验与建模方法的研究。建立了精密数控车床主轴系统轴向与径向偏转热误差补偿模型以增强其误差补偿能力,并提高机床加工精度。构建了主轴系统热误差测试平台,应用五点法测试主轴系统热误差,使用热电偶与红外热像仪测量主轴系统温升关键点温度变化数据,应用灰色综合关联分析法实现温度敏感测点辨识。构建了基于粒子滤波重采样粒子群算法的热误差预测模型,对模型预测效果进行评价。结果表明:基于粒子滤波重采样粒子群热误差补偿模型得到的轴向热误差预测残差为-1.29μm~1.55μm,建模精度为95.04%;y向热偏转误差预测残差为-4.68×10~(-6°)~9.66×10~(-6°),建模精度为91.26%;z向热偏转误差预测残差为-5.83×10~(-6°)~8.59×10~(-6°),建模精度为93.24%。实验结果证明该热误差补偿模型具有较高的预测精度,具有较强的工程应用价值。  相似文献   

7.
龙门铣床广泛应用于航空航天领域大型零件的精密加工,其几何与热误差均对加工精度有显著影响。本文基于西门子840D数控系统内置的补偿接口,以及作者提出的大型机床的关键误差分析、辨识及建模方法,在建立好的主轴热误差及主进给轴的几何与热综合误差数学模型的基础上,提出了一种大型龙门铣床主轴及进给轴多项主要变形的补偿方法,开发了相应的补偿系统,并实现了主轴热误差和主进给轴(x轴)综合误差的实时控制补偿,验证了该方法的有效性。  相似文献   

8.
数控机床误差检测及其误差补偿技术研究   总被引:7,自引:0,他引:7  
使用Renishaw激光干涉仪和高精度位移传感器实现了机床线性定位误差和主轴热误差的测量。通过补偿机床螺距和丝杠间隙误差,实现了机床线性定位误差的补偿。同时,使用PMAC控制卡对数控系统的G代码指令进行了实时修改,实现了机床主轴热误差的实时补偿。分析补偿后的机床,发现机床的加工精度得到了很大提高,表明该补偿效果明显。  相似文献   

9.
支持向量回归机在数控加工中心热误差建模中的应用   总被引:2,自引:1,他引:1  
研究并选择最佳模型对数控加工中心加工过程中的主要误差源-主轴热误差进行补偿,以便提高机床的加工精度.以leaderway-V450加工中心为实验对象,对主轴热误差支持向量回归机模型和多元回归模型进行了分析对比.首先,根据夏季数据建立了多元回归模型和支持向量回归机模型.然后,将夏季另一批数据和秋季数据分别代入两种模型计算各模型补偿精度.最后,根据两种模型的精度变化规律比较两者稳健性.实验结果表明:支持向量回归机夏季模型用于补偿夏季和秋季热误差补偿标准差都小于2 μm,而多元回归模型用于补偿夏季数据补偿标准差小于2μm,用于补偿秋季数据补偿标准差大于8μm.数据显示支持向量回归机模型用于热误差补偿不仅具有较高精度,同时具有较好鲁棒性.  相似文献   

10.
主轴是立式加工中心最精密最核心的零件之一。主轴内轴承长时间工作会产生大量的热能,导致主轴发生热变形,进而影响被加工零件的精度。以某型号高速钻铣立式加工中心主轴系统为研究对象,对主轴进行了热位移实验,得到了主轴的温度分布和X、Y、Z三方向的热变形位移,进而分析得出了主轴热位移对加工精度的影响,为主轴的热误差补偿提供了依据。  相似文献   

11.
龙门数控机床主轴热误差及其改善措施   总被引:3,自引:0,他引:3  
依据ISO和ASME标准建立龙门数控(Numerical control,NC)机床热误差测试条件,通过主轴恒转速和变转速热误差试验分析主轴箱温度场分布及其对主轴热误差的影响趋势。建立龙门机床误差元素模型,分析影响机床各坐标轴加工精度的主轴热误差分量。研究发现,主轴热误差和主轴箱温度存在单调对应关系,温度对主轴轴向的热伸长误差的影响要远大于主轴径向的热漂移误差,但温度变化相对各坐标变形存在热延迟和热惯性等特性。对主轴径向精度影响最大的热误差分量是由机床生热产生的同方向的偏移误差和与之垂直的偏转误差;对轴向精度影响最大的则是轴向的偏移误差。针对热误差特点和分布规律,提出结构优化、热平衡、误差补偿建模等3种减小热误差的措施,并对其各自优点进行了分析。  相似文献   

12.
为避免机床热变形对加工精度的影响,针对高速机械主轴发热量大、传动链中热量不均衡等特点,提出了一种基于SINUMERIK数控系统的主轴热变形实时补偿方法。以某卧式加工中心作为研究对象,利用主轴热变形分析仪进行机床主轴热变形检测,采集检验棒在X、Y、Z这3个方向的实时变化并生成曲线。在主轴系统中布局5个温度传感器实时采集主轴内部温度,采用线性回归方法建立机械主轴的热误差模型,结合SINUMERIK数控系统提供的同步功能及温度补偿功能,实现对刀尖位置的实时补偿,保障了机床的加工精度。  相似文献   

13.
以主轴动态回转精度为出发点,以两种不同类型加工中心主轴为测试对象,在非切削状态下分别进行了径向误差运动和轴向误差运动,以及热变形的测试及分析。提出了使用主轴误差分析仪进行主轴的动态回转精度以及热变形分析的方法,测试结果表明:静态误差相近的主轴,由于其结构、传动方式及冷却方式的不同,其动态精度可能存在很大差异。针对实测的加工中心主轴和整机的结构进行分析,可为机床和主轴的结构设计、误差补偿和实际加工提供技术支撑。  相似文献   

14.
精密卧式车床的关键部件会在内外热源的综合影响下发生热变形,进而严重影响加工精度。数据驱动的热误差建模方法为解决此问题提供了有效手段,而厘清车床的关键热误差元素及其传导机理可进一步提高车床热误差的建模效率、精度和鲁棒性。文章针对车床X轴丝杠摩擦热、主轴发热、Z轴鞍座发热以及液压刀塔和拖板发热4个关键热误差元素开展了溯源测试,并根据溯源结果建立了热误差模型并开发了热误差实时补偿系统。车削验证实验结果表明,补偿后车床的加工误差在反复的加工和冷机过程中均稳定降低了75%以上,文章所提的热误差溯源和补偿方法有效提高了车床的加工精度和稳定性。  相似文献   

15.
针对由几何误差与热误差引起的数控机床工作台与主轴之间相对位置变动的问题,通过试验分析其在不同温度状态下的误差数据,得到机床工作台平面度误差随热变形保持不变的规律,并提出了一种数控机床工作台平面度误差与主轴热误差的综合补偿方法。该方法通过分别建立工作台平面度误差模型和热误差模型,并运用叠加原理建立综合误差补偿模型,对传统固定单位置点建模补偿方法的原理性缺陷进行了改进。结合机床关键部件的实时温度值和刀具位置的实时坐标值,计算出了全工作台各区域各温度阶段的误差补偿值,进而实现了全工作台主轴轴向综合误差的实时补偿。检验及分析结果表明,相比于传统固定单位置点热误差建模补偿方法,该方法所建模型残余标准差减小约7μm,精度提高比例达到50%;单次最大补偿残差减小约11μm,精度提高比例达到60%,大幅度提高了机床的加工精度。  相似文献   

16.
解决了因主轴热变形引起的数控机床加工精度下降的问题,建立了精密数控机床主轴径向和轴向动态热变形的计算机精细数值计算模型和主轴热误差动态预报理论模型,以期揭示温度变化对精密数控机床加工精度的影响机理,为精密数控机床综合误差补偿提供理论依据和技术支撑。本文采用理论分析、数值计算和试验研究相结合的方法,利用有限元方法的数值特点和实际工况实时测量数据的可靠性,为数控机床主轴系统热态特性研究提供理论与实际的依据。  相似文献   

17.
为解决金属手机外壳加工行业内的机床主轴轴向热误差问题,提出了一种基于时间序列算法的主轴轴向热误差建模方法,对一台钻攻中心建立了主轴轴向热误差实时补偿模型。实践结果表明:通过该模型实时补偿,机床的主轴轴向热误差由原来62μm补偿到7μm,加工工件尺寸控制在10μm左右。  相似文献   

18.
为研究数控机床热变形规律,实现数控机床误差在机实时补偿,进行数控机床主轴热变形理论及试验分析,结果表明,数控机床主轴热变形与主轴温变在距热源约1/3位置存在近似线性关系,即主轴热变形存在伪滞后现象,这一结果为数控机床测温点优化布置及热误差鲁棒建模提供理论依据。为验证机床热变形伪滞后现象,对VM850加工中心主轴热漂移误差在机实时检测并建模,通过自主研发数控机床误差在线实时补偿系统对主轴热漂移误差进行实时补偿,经补偿,机床主轴热漂移误差减少90%以上,有效提高了数控机床主轴精度。  相似文献   

19.
在精密切削加工技术领域,机床发热变形是影响加工精度的主要因素。设计Labview数据采集软件以及Matlab数据分析软件;对某数控立式加工中心主轴热变形进行测试实验;分析影响主轴热变形的主要因素,即主轴转速、主轴温度对机床主轴热变形的影响;应用人工神经网络技术对热变形进行非线性建模;为精密机床热误差补偿提供技术支撑。  相似文献   

20.
张丽秀    李金鹏    李超群   《机械与电子》2016,(9):59-61
电主轴的动态误差和热变形是影响数控机床精度的重要指标,其对定位精度和工件表面加工质量的影响尤为显著。采用主轴误差分析仪,对150MD24Z7.5型主轴的各项动态误差及各方向的热变形量进行实验研究。通过试验结果数据分析,获得了主轴系统在不同转速下的同异步误差、热平衡时间及不同方向的热变形量等,为主轴动态误差补偿和热变形智能预测提供了准确的数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号