首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为了提高飞秒激光加工的效率和灵活性,设计了一套飞秒激光全息并行加工系统,并对该系统中加载计算全息图(CGH)生成的多焦点均一性和空间位置分布的关系进行了研究.首先,将空间光调制器(SLM)引入飞秒激光加工光路;然后,采用GS(Gerchberg-Saxton)算法设计了直线型和三角型分布的三焦点阵列.最后,通过数值仿真和实验研究比较了用两种不同空间分布的焦点列阵设计的全息图对均一性的影响.结果表明,在焦点阵列间距较小的情况下,直线型分布设计的焦点阵列不易获得好的均一性,三焦点U仅有79%;而用三角型分布焦点阵列设计时,可以获得很好的均一性,三焦点U约等于100%.实验数据表明,三角形分布的三焦点可以实现高质量的并行加工,加工的半球状微结构阵列具有微透镜阵列的功能.  相似文献   

2.
将飞秒激光双光子聚合加工技术和毛细力诱导自组装技术相结合实现了各向异性结构和多级结构的制备。首先,使用飞秒激光双光子加工技术加工出微柱阵列,将微柱置于显影液中显影,然后放置在空气中。在显影液蒸发的过程中,微柱结构单元受到毛细力的作用而弯曲实现自组装。通过控制微柱的高度和直径的不一致性实现了两种各向异性结构制备方法,并成功制备了底层微柱直径分别为2μm和6μm双层结构。由于毛细力的大小和微柱高度无关,且同样端部变形量下较高微柱的弹性回复力小于较低微柱的弹性回复力,更易发生弯曲;直径较大的微柱具有更强的抗弯曲能力,从而引导直径较小的微柱向较大的微柱倾斜,藉此制备了各向异性结构。使用毛细力自组装辅助飞秒激光微纳加工可以实现灵活可控的复杂3D结构的加工,并将在生物医药、化学分析、微流体等领域发挥重要作用。  相似文献   

3.
综述了激光短脉冲化的飞秒激光发展史,重点论述了飞秒激光的加工机理和特点.飞秒激光独特的光束特性决定了他是一种理想的微细加工工具,可以实现聚合物的制备,可以对各种透明材料内部进行三维加工和改性,另外在生物学领域也有着独特的应用.本文最后还展望了飞秒激光加工未来的发展方向.  相似文献   

4.
介绍了一种基于原子力显微镜(AFM)的激光近场增强纳米加工方法。探讨了作为主要影响因素的激光场增强效应,用时域有限差分法对AFM探针下光场的空间分布进行了数值分析。研究了飞秒激光入射到AFM探针的PMMA材料的图形化,在PMMA材料表面加工了不同宽度的线条和字母。利用AFM对所得纳米图形进行了原位测试。在激光参数未经优化的情况下,其线宽可达100 nm,超过了实验室飞秒激光远场加工的分辨能力(200 nm)。  相似文献   

5.
基于原子力显微镜的PMMA飞秒激光纳米加工   总被引:1,自引:2,他引:1  
介绍了一种基于原子力显微镜(AFM)的激光近场增强纳米加工方法。探讨了作为主要影响因素的激光场增强效应,用时域有限差分法对AFM探针下光场的空间分布进行了数值分析。研究了飞秒激光入射到AFM探针的PMMA材料的图形化,在PMMA材料表面加工了不同宽度的线条和字母。利用AFM对所得纳米图形进行了原位测试。在激光参数未经优化的情况下,其线宽可达100nm,超过了实验室飞秒激光远场加工的分辨能力(200nm)。  相似文献   

6.
以激光精密加工金属血管心脏支架生产工艺为基础,探索了可降解心脏支架的飞秒激光精密加工方式。利用飞秒激光的超短脉冲和超高峰值功率的特性,实现了以聚乳酸(PLA)为材料的可降解心脏支架的激光精密加工。设计了椅形衬套,稳定了激光焦斑位置,分析得出了最佳衬套离焦距用于配合飞秒激光精密加工。通过调试工艺参量,解决了由于材料本身特性引起的切缝边缘易炭化和加工过程中由于离焦量和焦斑位置准确度不稳定导致不能精密加工的问题,实现了对非金属可降解心脏支架的无热精密加工。说明了飞秒激光配合椅形衬套加工非金属血管支架的可行性,确定了最佳加工参量,加工出了无热损伤切边光滑筋宽一致性为±6μm的可降解心脏支架样品。  相似文献   

7.
针对传统加工方法很难实现微机电系统(Micro electromechanical systems,MEMS)零部件高质量加工的问题,在微细加工技术研究基础上,提出采用飞秒激光双光子聚合加工技术加工标准渐开线微齿轮的方法.采用钛蓝宝石激光器自行搭建的飞秒激光双光子加工系统,能够输出波长为800 nm的飞秒激光用于双光子聚合加工,利用AutoCAD软件设计标准渐开线微齿轮,通过理论和试验两种方法研究激光功率与单个固化点尺寸之间的关系,进而研究扫描步距与加工精度和表面粗糙度之间的关系,结果表明,激光功率越小,加工分辨率越高;扫描步距越小,加工变形越大,但表面质量提高.采用优化后的加工工艺参数加工出高质量的标准渐开线微齿轮,其表面粗糙度Ra27.66 nm.因此,飞秒激光双光子加工技术能够为微齿轮或其他MEMS零部件的加工提供一条有效途径.  相似文献   

8.
新产品信息     
达曼光栅的飞秒测量系列装置通过验收10月20日,中科院综合计划局在上海光机所主持召开了中科院仪器研制项目“达曼光栅的飞秒测量系列装置”验收会。该项目由上海光机所周常河研究员负责承担。验收会专家听取了周常河研究员作的工作报告,审查了测试报告、用户使用报告和经费决算报告等资料,并到实验室现场进行了考察。根据项目合同要求,专家组认为,飞秒测量装置作为飞秒激光应用中重要的标定器,已有的飞秒分光器件主要采用半透半反分光镜,当飞秒激光通过时光束特性会被改变,导致测量误差,因此,采用无色散的分光方法是研究的关键和前沿领域。…  相似文献   

9.
开发了一个能实现复杂三维型体加工的四轴三联动数控飞秒激光微细加工系统。介绍了该飞秒激光微细加工系统的硬件、软件组成,详尽阐述了整个系统的构建过程、工作机理及关键技术。当前该系统主要用于聚合复合材料的加工。  相似文献   

10.
根据雪崩离化模型,分析了飞秒激光脉冲与介质材料相互作用过程中光学特性的变化规律。由于多层膜光学元件的光学特性与材料的折射率密切相关,当飞秒激光照射介质材料时,折射率会随着电场强度分布呈现不同程度的减小,从而会影响光学元件的性能。文中计算了飞秒激光照射多层膜光学元件时的透射光谱曲线,结果表明薄膜材料在发生不可逆损伤之前,光学元件的光谱特性已经发生变化。  相似文献   

11.
With increasing demand for microstructure shape accuracy for MEMS and optoelectronic devices, controllability of shape and morphology in micro-fabrication has become increasingly crucial. In this paper, the effects of processing parameters on the shape and morphology of microstructures in femtosecond laser fabrication of imprint roller are explored. An optimized fabrication process is proposed to acquire high accuracy microstructures, in which a two-step inclination ablation process and optimal laser focus position are adopted. Adjusting and matching the processing parameters is a basic method to acquire well-defined shapes, but the ablation results indicate that the draft angle of microstructures can only be adjusted in a limited range due to the intensity distribution of laser beam. A two-step inclination ablation process is adopted to increase the draft angle. In the two-step inclination ablation process, the laser beam irradiates the target surface with an angle and the microstructure with a much steeper draft angle forms after the two-step fabrication. Laser focus position is explored as an important parameter affecting the morphology, and an optimal laser focus position is obtained to enhance the ablation quality. By matching the laser fluence and laser focus position, this morphology enhancement method can realize the high-quality ablation of microstructures with a wide range of dimensions without changing the focusing objective lens.  相似文献   

12.
We present a parallel depth resolved laser fabrication technique for micro- and nano-machining metal substrates based on temporal focusing. In this system, the spectrum of a femtosecond laser pulse is first spatially separated by a digital micromirror device, which simultaneously serves as a diffraction grating and a programmable binary mask. After collimation and beam flattening, an objective lens recombines the spectrum to the focal region, forming a high-intensity, depth resolved light sheet for laser micromachining. The light sheet technology enables parallel fabrication of highly uniform micro-structures of close to diffraction-limited resolution. Experimental results demonstrate high-resolution (~800 nm) direct area patterning on various metal substrates, e.g., nickel and copper, over an area of ~100 × 60 µm2 within tens of laser pulses. The relationship among material removal rate, surface flatness, laser power, and number of pulses have been experimentally studied; the results suggest the application of higher power with fewer number of laser pulses produce microstructures of better surface quality. The light sheet technology substantially improves the throughput of ultrafast laser machining, enabling direct area patterning without compromising the resolution.  相似文献   

13.
为了突破现存的倾斜布拉格光纤光栅制作方法的局限,提出了采用非对称光路制作倾斜条纹反射式光纤光栅的方法.该方法是通过在全息光路中加入柱面镜,将圆形光斑聚焦成线状激光,线状激光以平行于材料层的方式写入,从而获得不同倾斜角度,条纹间距任意的倾斜光纤光栅.通过写入条件的控制,达到精确控制光栅的反射率和带宽的目的.模拟仿真和分析...  相似文献   

14.
We demonstrate fabrication of a high-quality factor lithium niobate double-disk whispering-gallery microcavity using femtosecond laser assisted ion beam milling. Using this method, two vertically stacked 30-µm diameter disks with a 200-nm gap are fabricated. With our device, an optical quality factor as high as 1.35?×?105 is demonstrated. Our approach is scalable to fabricate multiple disks on a single chip.  相似文献   

15.
In this paper, an on-machine error calibration method, covering error modeling and measurement, is proposed to evaluate and compensate the errors caused by the mechanical and optical system equipped in the micromachining center using the femtosecond laser. Through preliminary tests by dicing silicon wafer, it has revealed that the squareness, laser beam misalign and focal position offset, are the main causes to result in the inaccuracy of micromachining. Consequently, an error modeling method is proposed to evaluate the error distribution in the workspace, and hereafter a comprehensive error vector of the laser beam, combining the squareness errors of Z-axis with the laser beam misalign, is generated by the variable substitution method. Subsequently, an increment error model in the instant local coordinates is established to satisfy the requirement of the programming method commonly used in the laser machine tools. Furthermore, a series of holes and grooves are machined on the femtosecond laser micromachining center to validate the proposed approach and model. The machining dimensions including diameters, distances and angles, are measured on-machine to identify the squareness errors, laser beam misalign and focal position offset according to the proposed error model. Finally, the experimental results show that, comparing to the uncompensated tests, the machining accuracy has been significantly improved with the proposed method.  相似文献   

16.
This paper proposes a novel fabrication process based on femtosecond laser cutting and micro-electric resistance slip welding to address the bottleneck presented by ultraviolet–Lithographie, Galvanoformung, Abformung combined with micro-electroforming, in which micro-molds are usually fabricated with vertical wall structures. At first, 10-μm thick 0Cr18Ni9 stainless steel foils were cut by femtosecond laser to obtain several single-layer graphics which were then joined by micro-electric resistance slip welding. The slip welding process formed a 3D micro-structure and the weld zone of micro-structure was tested by the X-ray diffraction (XRD). The XRD results show that the phases of weld zone remain unchanged, but that the phase content slightly changes. Finally, a 3D metal micro-structure mold was processed under 110 mW femtosecond laser power, 0.1 mm/s cutting speed, 0.21 V welding voltage, 10 ms welding time, 0.2 MPa welding pressure, 0.5 mm bar electrode diameter, 160 time’s slip welding discharge, which proves that the forming process could be a useful method for the production of 3D micro-molds.  相似文献   

17.
飞秒激光加工最新研究进展   总被引:2,自引:0,他引:2  
飞秒激光作为一种先进的加工技术,以其"冷加工"、多光子非线性效应、突破衍射极限等特质可实现对任意材料由微纳到宏观尺度复杂三维零件的精密加工,在微纳和精密机械、微纳电子、微纳光学、表面工程、生物医学等领域展露了巨大的市场应用前景。文章重点针对近三年来飞秒激光刻蚀、切割、制孔、功能表面制备、体内加工和聚合加工的研究进展进行综述,并探讨了飞秒激光在与材料相互作用机制、加工精度、加工方式、加工对象等方面面临的机遇和挑战。  相似文献   

18.
The capability of direct writing makes ultrashort pulse laser significant in the microfabrication of MEMS devices based on polymer and glass. In particular, nanosecond and femtosecond lasers are able to transfer the adequate energy in femtosecond intervals for the removal of the materials. Because of its advantages, just like the small feature size, smooth finishing surface, flexible structuring and the minimum thermal effect, ultrashort pulse lasers have become a convincing technique with the high peak power. This paper presents the femtosecond laser machining results of the polycarbonate, aluminosilicate glasses and nanosecond laser machining of aluminosilicate glasses. The microchannels with the critical micron-scale dimensions and the sub-micron scale surface roughness were achieved by the optimized operating parameters of the laser. The major influence factors such as cutting speed, power energy, and power stability were analyzed to obtain the optimized parameters for the fabrication of the microchannels for a bubble switch. The ultrashort pulse laser micromachining was applied in the prototype of a bubble optical switch. By miniaturization of the structure of the microchannel, the switch speed can be promisingly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号