首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Machining of hard materials has become a great challenge for several decades. One of the problems in this machining process is early tool wear, and this affects the machinability of hard materials. In order to increase machinability, cutting tools are widely coated with nanostructured physical vapor deposition hard coatings. The main characteristics of such advanced hard coatings are high microhardness and toughness as well as good adhesion to the substrate. In this paper, the influence of hard coatings (nanolayer AlTiN/TiN, multilayer nanocomposite TiAlSiN/TiSiN/TiAlN, and commercially available TiN/TiAlN) and cutting parameters (cutting speed, feed rate, and depth of cut) on cutting forces and surface roughness were investigated during face milling of AISI O2 cold work tool steel (~61 HRC). The experiments were conducted based on 313 factorial design by response surface methodology, and response surface equations of cutting forces and surface roughness were obtained. In addition, the cutting forces obtained with the coated and uncoated tools were compared. The results showed that the interaction of coating type and depth of cut affects surface roughness. The hard coating type has no significant effect on cutting forces, while the cutting force F z is approximately two times higher in the case of uncoated tool.  相似文献   

2.
《Wear》2007,262(3-4):380-389
The wear resistance of a PVD (Ti0.7Al0.3)N coating deposited on an as-received and gas nitrided AISI H13 has been examined by using ball-on-disc tests at room temperature and at 600 °C. In order to determine the influence of a previous heat treatment on this type of steel on the wear resistance of the (Ti0.7Al0.3)N coating, two commercial heat treatments were employed which gave rise to the same substrate hardness. Surface microhardness measurements have been carried out to determine the load-carrying capacity of the coated systems. In general, the wear behavior was found to be independent of the nature of the heat treatment applied to the substrate prior to the nitriding process but strongly dependent on the testing temperature. At room temperature, there were small variations between the different systems tested, whereas at high temperatures, clear differences were found between them. At 600 °C, a typical temperature that could be achieved during the aluminum extrusion processes, the nitrided H13 steel/(Ti0.7Al0.3)N PVD duplex coating shows a satisfactory wear resistance compared to both the nitrided steel and the steel substrate only coated with (Ti0.6Al0.4)N, which exhibited the worst performance. The satisfactory wear resistance observed for the duplex coating system at high temperature is mainly a consequence of two different aspects. Firstly, its higher load-carrying capacity due to the existence of a hard nitrided layer, as well as its high H/E ratio. Both parameters allow the presence of higher elastic strains without the failure of the ceramic layer, which would normally occur in the case of TiAlN PVD coatings deposited directly on the AISI H13 steel. Secondly, the intrinsic characteristics of the coating, i.e. its chemical constitution, which allows the formation of a dense oxide mixture inside the wear track that impedes both its further oxidation and the deterioration of the mechanical properties as consequence of nitrogen diffusion.  相似文献   

3.
Flank wear progression and wear mechanisms of uncoated, coated with PVD applied single-layer TiAlN, and CVD applied multi-layer MT-TiCN/Al2O3/TiN cemented carbide inserts were analyzed during dry turning of hardened AISI 4340 steel (35 HRC). Experimental observations indicate that by applying a coating to the uncoated insert the limiting cutting speed increase from 62 to 200 m/min, which further extends up-to 300–350 m/min when using multi-layer coating scheme. Relatively lower wear rate seen when using single-layer TiAlN coated inserts. However, after removal of the thin layer of coating the wear rate increase rapidly, subsequently dominates the wear rate of multi-layer coated inserts. Cutting forces; especially axial and radial components have also shown the similar behavior and increase rapidly when the tool failure occurs. Flank wear, crater wear and catastrophic failure are the dominant forms of tool wear. Digital microscope and SEM images coupled with elemental analysis (EDAX) have been taken at various stages of tool life for understanding the wear mechanisms.  相似文献   

4.
为了研究不同涂层刀具切削淬硬H13钢的切削性能,进行了多层Ti化合物涂层、TiAlN涂层以及MTTiCN厚Al_2O_3TiN涂层材料刀具车削加工淬硬H13钢试验,分析了不同的涂层材料刀具与切削力、切削温度、涂层刀具磨损以及刀具寿命的关系。研究得出:多层Ti化合物涂层刀具受到三个方向的力都大于其它两种涂层的刀具,而且切削温度最高;用TiAlN涂层刀具切削时温度最低;切削过程中三种刀具后刀面磨损程度不同,发现多层Ti化合物涂层刀具磨损最为严重,寿命最短;MT-TiCN厚Al_2O_3Ti N涂层材料刀具比多层Ti化合物涂层刀具寿命长30%;TiAlN涂层刀具的切削寿命最长比多层Ti化合物涂层刀具寿命长45%。  相似文献   

5.
Two PVD coated powder metallurgy high speed steel (PM-HSS) gear cutters were investigated when machining helical gears made from AISI 19MnCr5 steel with hardness between 140 and 180 HV. Machining trials were carried out with gear cutters coated with TiAlN (nano layers) and TiN (mono layer). Crater and flank wears were measured and analysed after all the machining trials. Analyses of the worn tools show that the TiAlN coated gear cutter performed better than the TiN coated gear cutter. This can be attributed to its nano layers and the higher hardness of the TiAlN coating. The dominant tool wear mechanisms were adhesion, abrasion, delaminating of the coating layer and chipping of the cutting edge.  相似文献   

6.
In this study, using a two-roller testing machine, the authors examined the surface durability of thermally sprayed WC-Cr-Ni cermet coating in lubricated rolling with sliding contact conditions. The coating was formed onto the axially ground, blasted and circumferentially ground roller specimens made of a thermally refined carbon steel or an induction hardened carbon steel by means of the high energy type flame spraying (Hi-HVOF) method. The WC cermet coated roller finished to a mirror-like condition was mated with the carburized steel roller without coating having a surface roughness of Ry=3.05.0 μm. In the experiments, a maximum Hertzian stress of PH=0.6 or 0.8 GPa was applied for the thermally refined carbon steel roller and PH=1.4 GPa was applied for the induction hardened carbon steel roller in line contact condition. As a result, it was found that in the case of induction hardened steel substrate, the coated roller generally exhibits a long life without any serious damage and the surface durability is hardly affected by the substrate surface finish, while in the case of thermally refined steel substrate, the durability of coated roller is lowered and the life to flaking is very short particularly when the substrate surface is circumferentially ground and the mating surface is rough. The surface durability of coated roller was also compared with the durability of steel roller without coating. Finally, in order to discuss the durability of coated roller, the elastic-plastic behavior of the subsurface layer under repeated rolling with sliding contact was analyzed using a finite element method (FEM).  相似文献   

7.
应用非平衡磁控溅射技术在6204轴承钢球表面制备出Cr/C复合镀层,用电子透射显微镜(TEM)和X射线光电子能谱(XPS)分析镀层微观结构,对镀层钢球轴承和无镀层钢球轴承的速度性能和断油性能进行了试验。结果表明,Cr/C复合镀层有良好的显微结构,有大量的石墨存在。与无镀层钢球轴承相比,镀层钢球轴承有缓慢的温升、良好低振动性能和振动的平稳性能,特别是高速运转时,减振效果尤为明显,保证了轴承有优异的高速性能;镀层钢球轴承有良好的自润滑性能,极大提高轴承应急运行性能。  相似文献   

8.
The present work deals with a comparative study on flank wear, surface roughness, tool life, volume of chip removal and economical feasibility in turning high carbon high chromium AISI D2 steel with multilayer MTCVD coated [TiN/TiCN/Al2O3/TiN] and uncoated carbide inserts under dry cutting environment. Higher micro hardness of TiN coated carbide samples (1880 HV) compared to uncoated carbide (1430 HV) is observed and depicts better resistance against abrasion. The low erosion rate was observed in TiN coated insert compared to uncoated carbide. The tool life of TiN coated insert is found to be approximately 30 times higher than the uncoated carbide insert under similar cutting conditions and produced lower surface roughness compared to uncoated carbide insert. The dominant wear mechanism was found to be abrasion and progression of wear was steady using multilayer TiN coated carbide insert. The developed regression model shows high determination coefficient i.e. R2 = 0.977 for flank wear and 0.94 for surface roughness and accurately explains the relationship between the responses and the independent variable. The machining cost per part for uncoated carbide insert is found to be 10.5 times higher than the multilayer TiN coated carbide inserts. This indicates 90.5% cost savings using multilayer TiN coated inserts by the adoption of a cutting speed of 200 m/min coupled with a tool feed rate of 0.21 mm/rev and depth of cut of 0.4 mm. Thus, TiN coated carbide tools are capable of reducing machining costs and performs better than uncoated carbide inserts in machining D2 steel.  相似文献   

9.
研究并比较了TiAlN和TiN涂层的成分、微结构、力学性能与抗氧化性及涂层铣刀的高速切削性能和涂层钻头的切削性能。结果表明,TiAlN和TiN涂层同为单相的NaCl型结构,并都呈现择优取向的柱状晶,TiAlN涂层的硬度远高于TiN涂层的硬度,TiAlN涂层的抗氧化温度明显高于TiN涂层的抗氧化温度。在高速铣削条件下,TiAlN涂层铣刀的后刀面磨损速率仅为TiN涂层铣刀的约四分之一。在钻孔数相同时TiAlN涂层钻头的磨损量也显著低于TiN涂层钻头。TiAlN涂层刀具的使用寿命显著高于TiN涂层刀具。  相似文献   

10.
Tool wear is one of the most important problems in cutting titanium alloys due to the high-cutting temperature and strong adhesion. Recently, the high-speed machining process has become a topic of great interest for titanium alloys, not only because it increases material removal rates, but also because it can positively influence the properties of finished workpiece. However, the process may result in the increase of cutting force and cutting temperature which will accelerate tool wear. In this paper, end milling experiments of Ti-6Al-4V alloy were conducted at high speeds using both uncoated and coated carbide tools. The obtained results show that the cutting force increases significantly at higher cutting speed whether the cutter is uncoated carbide or TiN/TiAlN physical vapor deposition (PVD)-coated carbide. For uncoated carbide tools, the mean flank temperature is almost constant at higher cutting speed, and no obvious abrasion wear or fatigue can be observed. However, for TiN/TiAlN PVD-coated carbide tools, the mean flank temperature always increases as the increase of cutting speed, and serious abrasion wear can be observed. In conclusion, the cutting performance of uncoated inserts is relatively better than TiN/TiAlN PVD-coated inserts at a higher cutting speed.  相似文献   

11.
Wear-induced roughness in terms of grooves, sharp ridges, and edges leads to scattering of the reflected light and leads unavoidably to a reduction of the optical signals in a standard specular geometry. However, by using a double-layer system consisting of titanium aluminum nitride (TiAlN) on top of a titanium nitride (TiN) layer we obtain an increase in the reflected light as a result of wear. The relative change of reflectance of light from the tribological TiAlN coated surface to the underlying layer of TiN is similar for non-worn surfaces and for surfaces exposed to an abrasive wear process. The induced roughness reduces the signals from worn samples, in a standard specular geometry, by up to 30% compared with unworn samples. Our model system of TiAlN coatings on top of ‘optical’ signal layers of TiN deposited on a 100Cr6 steel substrate, was exposed to a reciprocating wear process with up to 105 repetitive cycles in a linear tribometer. The worn TiAlN layers of thicknesses up to 3 μm, with strongly developed grooves and ridges, were subsequently used for the reflectance measurements. The results show that optical reflectance monitoring is a potential technique for intelligent determination of a residual thickness of realistic tribological coatings prior to complete wear.  相似文献   

12.
High‐temperature perfluoropolalkylether lubricants including Fomblin® are susceptible to degradation and cause corrosion in the presence of ferrous metals such as M50 bearing steel. This paper describes the effect of surface treatment (nitriding), coating chemistry and architecture in preventing corrosion/oxidation of M50 steel and thermo‐oxidative degradation of Fomblin® fluid. Specifically, Cr‐CrN multilayered coating architecture was used with and without a nitrided steel surface. The oxidation/corrosion tests were conducted by immersing the nitrided and/or coated M50 coupons in Fomblin® fluid in an oxidative environment at 270°C for 24 h and compared with untreated/uncoated coupons. It is shown that a considerable lessening of the corrosion of the steel and degradation of the Fomblin® fluid can be achieved by nitriding alone. Nitriding in combination with the multilayered Cr‐CrN coating exhibited the best protection. The results are discussed in relation to the literature data. Copyright © 2009 John Wiley and Sons, Ltd.  相似文献   

13.
A titanium nitride (TiN) coating was deposited by magnetron sputter ion plating onto steel and titanium alloy polished substrates. The adhesion of the coating on each substrate material was investigated using a newly developed multimode scratch tester. Progressive loading scratch tests, constant load scratch tests, multiple scratch tests in the same track and indentation tests were all performed. It was shown that the modified scratch tester can be used to identify not only coating detachment during progressive load scratch tests, but also other failure events such as cracking and cohesive damage to the coatings. By using the additional modes of operation, it was possible to study the fracture mechanisms in more detail i.e. chipping in the scratch track was cohesive for the TiN coated steel and adhesive for the TiN coated Ti alloy.  相似文献   

14.
C-N films were deposited on the 20CrMo alloy steel substrate by the Plasma Source Ion Implantation (PSII) method and TiN films were coated on the same material by the Physical Vapor Deposition (PVD) method. It was found that friction coefficient of C-N coating were relatively lower than TiN coating. And with the load increased, the friction coefficients of C-N coating and TiN coating were both decreased. Then the author puts forward the test rig, working under the conditions of 1,800 rpm, 20 N·m for 100 h. The observations by microscope showed the wear reduced. The antiwearing performance enhanced prominently. But the TiN coated gear had a more serious friction phenomenon than C-N coated gear. This is caused by that coating of TiN, which was made at a high temperature about 500°C. The high temperature led to the substrate intenerated and the surface hardness had decreased from 850 HV to 630 HV. PSII method eliminates the tempering problem of the coating of C-N films, which had better wear resistance than TiN films. The friction and wear resistance of gears which coated by C-N films ameliorated significantly.  相似文献   

15.
The effects of the oxide layer formed on the wear tracks of a titanium nitride (TiN) coated silicon wafer on friction and wear characteristics were investigated. Silicon wafers were used as the substrate of coated disk specimens, which were prepared by depositing TiN coating with 1.74 m in coating thickness using the arc ion-plating method. SAE 52100 steel balls were used as the counter-faces. The tests were performed both in air for forming an oxide layer on the wear track and in nitrogen to avoid oxidation. This paper reports the characterization of the oxide layer and its effects on friction and wear characteristics using Auger electron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The TiN coating with the oxides shows relatively high friction compared to that without an oxide layer. The thickness of the layer formed on the surfaces of the TiN coated silicon wafer is very thin compared to the thickness of the TiN coating. The oxide layer dominates the frictional characteristics between the two materials and induces a relative high friction.  相似文献   

16.
为了更好地指导TiAlN涂层刀具在金属切削加工中的应用,采用物理气相沉积法制备了TiAlN涂层刀具,应用TiAlN涂层刀具和未涂层刀具对不同调质状态的40Cr钢进行了干式切削试验。通过对切削过程中切削力和切削温度检测,考察了TiAlN涂层刀具的切削性能。结果表明,与YTl5硬质合金刀具相比,TiAlN涂层刀具适合切削高硬度的金属材料,且优越性更明显。  相似文献   

17.
In this study different specimens of ductile cast iron with tensile strength ranking from 400 MPa to 675 MPa were turned with K15 carbide, TiN coated and TiAlN coated tool in order to investigate wear mechanism and performance. Cutting forces and cutting temperature were similar for both coated tools, however flank wear and BUE were the lowest on the TiAlN coated tool, for this reason the TiAlN coated tool is suitable in the machining of ductile cast iron. The proposed tool wear mechanism is based on like-intermittent cutting caused by the pass from hard matrix to the soft graphite occasioning wear by adhesion. The analysis of the flank wear on coated tools is proposed by means of the wear curves in logarithmic scale instead of the usual linear scale. In this way, the change in wear rate is easily observed. This phenomenon was related with the wear out of the coating layer. The partial loss of the coating layer on cutting edge was confirmed by the EDS mapping images and SEM photographs.  相似文献   

18.
TiAlN涂层硬质合金刀具铣削35CrMoSiV钢的切削性能研究   总被引:1,自引:0,他引:1  
雷斌  莫继良  朱旻昊 《工具技术》2010,44(11):15-18
采用有和无PVD TiAlN涂层的细晶硬质合金铣刀对35CrMoSiV合金钢进行了干式端面铣削试验。分别测量了有、无涂层情况下铣刀后刀面径向磨损量和加工槽的表面粗糙度,通过光学显微镜观察了切屑,利用扫描电子显微镜(SEM)和电子能谱(EDX)分析了后刀面的磨损形态。研究结果表明:TiAlN涂层明显提高了硬质合金刀具的切削性能;硬质合金刀具后刀面磨损机制主要为粘着磨损和磨粒磨损,而涂层损伤是粘着磨损、剥层和氧化磨损共同作用的结果;在正常工作区内,提高铣削的转速和进给量,有利于减轻刀具的粘着,提高切削效率和质量。  相似文献   

19.
Ultra-precision machines are widely used to turn aspherical or spherical profiles on mould inserts for the injection moulding of optical lenses. During the turning of a profile on a stainless steel mould insert, the cutting speed reduces significantly to 0 as the cutting tool is fed towards the centre of the machined profile. This paper reports experiments carried out to study the wear of uncoated and PVD-coated carbide tools (carbide tool coated with 2000 alternate layers of AlN and TiN, each layer 1.5 nm and carbide tool coated with 0.5 m TiN, 5.5 m TiCN and 0.5 m TiN) in the ultra-precision machining of STAVAX (modified AISI 420 stainless steel) at low speeds with and without lubricant. A sprayed mixture of compressed air, liquid paraffin oil and cyclomethicone was used as lubricant. Examination of the wear at the rake face of the tool suggests that during machining of the alloy with a hardness of 55 HRC without lubricant, the cutting edge is subjected to high compressive stress, resulting in fracture. Reducing the hardness of the alloy would therefore result in a lower stress acting on the cutting edge, thus rendering the tool less susceptible to fracture. Both the rake and the flank faces of the coated tools exhibited lower wear than the uncoated tools. This was due to the former tools possessing higher fracture resistance owing to the presence of the coating. The lubricant was effective in improving surface finish, preventing surface fracture and reducing flank wear.  相似文献   

20.
After 32CrMoV is selected to manufacture nitrided gears coated with TiN by multi-arc ion plating,all of these uncoated gears and coated gears run in the gearbox under the same initial condi- tions so as to compare their difference concerning properties and microstructure.Experiment results indicate that tooth surface of the coated-TiN gears does not suffer surface abnormalities in meshed zone.Instead,the gears with nitrided case exhibit an abrasion mark on the meshed zone of tooth sur- face,which results in more weight loss of nitrided gears.The morphology of the surface suggests TiN film with more than 2000HV is so dense and smooth that coated-TiN gears have higher wear resis- tance compared with the uncoated gears.The microstructure of coated-TiN gears is finer,hardness is higher and its distribution of coated=TiN gears is more reliable than uncoated ones,which makes nitride layer combined with TiN film tightly.Consequently,the wear-resistance of gears has been dramatically promoted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号