首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Dwyer-Joyce  R.S.  Harper  P.  Drinkwater  B.W. 《Tribology Letters》2004,17(2):337-348
The measurement of the thickness of an oil film in a lubricated component is essential information for performance monitoring and control. In this work, a new method for oil film thickness measurement, based on the reflection of ultrasound, is evaluated for use in fluid film journal bearing applications. An ultrasonic wave will be partially reflected when it strikes a thin layer between two solid media. The proportion of the wave reflected depends on the thickness of the layer and its acoustic properties. A simple quasi-static spring model shows how the reflection depends on the stiffness of the layer alone. This method has been first evaluated using flat plates separated by a film of oil, and then used in the measurement of oil films in a hydrodynamic journal bearing. A transducer is mounted on the outside of the journal and a pulse propagated through the shell. The pulse is reflected back at the oil film and received by the same transducer. The amplitude of the reflected wave is processed in the frequency domain. The spring model is then used to determine the oil film stiffness that can be readily converted to film thickness. Whilst the reflected amplitude of the wave is dependent on the frequency component, the measured film thickness is not; this indicates that the quasi-static assumption holds. Measurements of the lubricant film generated in a simple journal bearing have been taken over a range of loads and speeds. The results are compared with predictions from classical hydrodynamic lubrication theory. The technique has also been used to measure oil film thickness during transient loading events. The response time is rapid and film thickness variation due to step changes in load and oil feed pressure can be clearly observed.  相似文献   

2.
根据角接触球轴承自旋运动特征,同时考虑弹流润滑效应,建立角接触球轴承考虑自旋运动的弹流润滑模型;采用多重网格法求解弹性变形,利用有限差分法迭代求解雷诺方程,得到较为精确的数值解;分析不同赫兹接触压力、滚道表面粗糙度下自旋对角接触球轴承弹流润滑和油膜刚度的影响。结果表明:考虑自旋时随着Hertz接触压力、自旋角速度增大,油膜厚度减小,油膜压力增大,油膜承压区域呈细长状,并向接触中心靠近;随着滚道表面粗糙度幅值增大,油膜压力和膜厚均出现了波动,且考虑自旋运动时,轴承油膜厚度明显减小,油膜局部压力峰值更大;随着卷吸速度、润滑油黏度增大,油膜刚度减小,而考虑自旋运动时油膜刚度值更大;随着自旋角速度增大,油膜刚度逐渐增大。  相似文献   

3.
Under starved conditions the thickness and distribution of the lubricant film in an elastohydrodynamically lubricated (EHL) contact is directly related to the distribution of lubricant on the track in the inlet to the contact. In starved lubricated rolling bearings this lubricant distribution is determined by many effects. The authors have developed a model to predict the oil lost from the track induced by EHL pressure with no replenishment. A complete bearing is modeled with multiple rolling element EHL contacts and with the applied load to the rolling elements varying along the circumference of the bearing. Results of the oil layer thickness on the track are presented for a ball bearing and a spherical roller bearing for different bearing loads and rotational speeds. The predicted layer thickness decay rate for a ball bearing is significantly larger than for a spherical roller bearing and the predicted effect of the bearing load on the decay rate is small compared to the effect of the rotational speed. The predicted decay periods due to the contact pressure effect are small compared to the observed (grease) life of bearings. The results show that a bearing cannot sustain an adequate layer of oil on the running track unless significant replenishment takes place.  相似文献   

4.
In this paper, the transient lubrication phenomena induced by isolated circular micro-cavities passing through an EHL point contact are analysed. A 52 100 steel ball was micro-machined using a femtosecond pulse laser, and is tested with an EHL tribometer. The experiments are simulated numerically with a 2D-multigrid solver. Under rolling–sliding conditions, the film thickness distribution is modified, and two opposite effects are observed. Deep micro-cavities induce an oil film decrease. On the contrary, a shallow micro-cavity locally generates a large increase in the film thickness. When the ball surface is the slowest, the propagation velocity of the local oil film reinforcement increases.  相似文献   

5.
基于小球反射法的超声换能器脉冲声场模型研究   总被引:1,自引:1,他引:0  
小球反射法是超声换能器声场测量的一种常用方法。为了研究小球的尺寸对声场测量精度的影响,建立了小球反射超声平面换能器发射的脉冲声场声压分布的理论模型,计算了由不同尺寸的小球反射的声场声压分布;实验验证了理论模型的正确性。理论计算和实验结果均表明小球的尺寸越小,测量精度越高。  相似文献   

6.
多点接触乏油弹流润滑模型及试验研究   总被引:1,自引:0,他引:1  
为探讨多点接触乏油弹流润滑机制,基于球与滚道接触区域的排油和补油平衡,建立适用于不同润滑状态的油膜厚度计算模型,可以计算从充分供油、乏油到干涸乏油的中心膜厚以及油膜不平衡时中心膜厚随滚动次数的衰减。利用自制的球-盘接触光干涉弹流试验装置,通过安装双镜筒同时获取相邻球的油膜图像,研究多点接触中相邻球的轨道重合和不重合时前球尾迹对后球油膜图像和中心膜厚的影响。结果表明:乏油润滑条件下,前后球的轨道不重合时轨道之间可相互补油;前后球的轨道重合时,在给定供油条件下,随着滚动线速度增加,入口弯液面逐渐靠近接触区域,中心油膜厚度增加,与相同工况下乏油润滑模型计算的膜厚对比吻合较好,验证了所建乏油润滑模型的正确性。  相似文献   

7.
利用阻容振荡原理,通过电路参数优化,研制出一台滚动轴承弹流油膜厚度测试仪。仪器的分辨率为3.5Hz/pF,测量范围为0 ̄2.2nF。仪器在全膜弹流润滑时可定量测量弹流膜厚;在部分膜时可根据振荡波形分析非金属时间接触率。利用仪器实测某惯性轮轴承的弹流油膜厚度,并考虑热和乏油的影响,对轴承的弹流油膜厚度进行理论计算,实测结果与理论计算结果基本一致。  相似文献   

8.
The effect of the cage clearance on the lubricant supply and elastohydrodynamic (EHL) film thickness has been studied in a ball-on-disc device. A single pocket from a standard nylon cage was mounted around the ball. The cage was instrumented so that the clearance between the cage and ball could be altered. Film thickness measurements were made with and without the cage present and for different clearances. Two lubricants were tested: a lithium hydroxystearate grease and its base oil. Film thickness was measured with increasing speed to determine the onset of lubricant starvation. Without a cage present the grease lubricated contact starved at a very low speed, typically 0.02 m/s and the film thickness dropped to a fraction of the fully flooded value. Starvation did not occur within the speed range for the base oil.

The presence of the cage significantly changed the starvation response. For the base oil reducing the clearance induced starvation by locally removing the lubricant from the track. The grease gave a very different result as reducing cage clearance increased the starvation speed thus ensuring fully flooded behavior over a much greater speed range. The improvement in grease performance with the cage present is attributed to two effects. First, the cage with reduced clearance helps to redistribute the grease into the track. Second, the close conformity between cage and ball promotes shear degradation of the grease structure generating low-viscosity material, which improves replenishment.  相似文献   

9.
Evaluation of lubrication conditions for a real frictional surface, such as a steel bearing, becomes an important issue for safe operation of a machine. In this paper, an application of ultrasonic technique is attempted for a purpose of evaluating the lubrication conditions. Ultrasonic waves emitted towards a hydrodynamic lubrication interface are reflected multiple times in oil film, and an echo height of reflected waves from the boundary is dependent on film thickness. The results of this study indicated that the ultrasonic technique is able to measure film thickness of approximately 50 nm in the case of a standstill surface having extremely small surface roughness. Furthermore, a potential for estimating the oil film thickness between a piston ring and cylinder is also indicated. In addition, in the case of a ball bearing, quantitative measurement of a size of dent, which forms the origin of flaking, is important for an evaluation of lubrication conditions. This becomes possible with an observation of a change in the echo height reflected from a boundary surface between a housing and an outer ring of the ball bearing. In this study, quantitative measurement of an indentation having 0.32 mm width on a raceway surface of an inner ring was achieved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Point contact film thickness in elastohydrodynamic lubrication (EHL) is analyzed by image processing method for the images from an optical interferometer with monochromatic incident light. Interference between the reflected lights both on half mirrorCr coating of glass disk and on super finished ball makes circular fringes depending on the contact conditions such as sliding velocity, applied load, viscosity-pressure characteristics and viscosity of lubricant under ambient pressure. In this situation the film thickness is regarded as the difference of optical paths between those reflected lights, which make dark and bright fringes with monochromatic incident light. The film thickness is computed by numbering the dark and bright fringe orders and the intensity (gray scale image) in each fringe regime is mapped to the corresponding film thickness. In this work, we developed a measuring technique for EHL film thickness by dividing the image patterns into two typical types under the condition of monochromatic incident light. During the image processing, the captured image is converted into digitally formatted data over the contact area without any loss of the image information of interferogram and it is also interpreted with consistency regardless of the observer’ s experimental experience. It is expected that the developed image processing method will provide a valuable basis to develop the image processing technique for color fringes, which is generally used for the measurement of relatively thin films in higher resolution.  相似文献   

11.
P. M. Cann 《摩擦学汇刊》2013,56(4):867-873
Many grease lubricated roller bearings operate in the starved elastohydrodynamic (EHL) regime where there is a limited supply of lubricant to the contact (1). Under these conditions the film thickness drops to a fraction of the fully flooded value (2) and, thus, it is difficult to predict lubrication performance, or bearing life, from conventional EHL models. In this regime film thickness depends on the ability of the grease to replenish the track rather than the usual EHL considerations. The conventional view of grease lubrication is that base oil bleeds from the bulk reservoir close to the track, replenishing the inlet and forming a fluid EHL film (3). Resupply, under starved conditions, will thus depend on both operating conditions and grease parameters. The aim of this paper is to evaluate the influence of these parameters on starved lubrication in a rolling contact. Starved film thickness has been measured for a series of greases and the results have been compared to the fully flooded values. These show that the degree of starvation increases with increasing rolling speed, base oil viscosity and thickener content but decreases at higher temperatures. In many cases an increase in absolute film thickness is obtained when moving from high viscosity base oil to a low one, this result is the reverse of normally accepted EHL rules. Taking the fully flooded film thickness as a guide to lubrication performance is therefore not valid as grease film thickness in the starved regime is determined by local replenishment rather than bulk rheological properties.  相似文献   

12.
In this work, the statistical asperity microcontact models in combination with the acoustic spring model and the load sharing concept are utilized to study the interfacial normal contact stiffness for a rough surface in line contact elastohydrodynamic lubrication (EHL). Two different statistical microcontact models of Greenwood and Williamson (GW) and Kogut and Etsion (KE) are employed to derive the normal contact stiffness expressions for a dry rough line contact considering the purely elastic contact and the multiple regimes elastic–elastoplastic–fully plastic contact, respectively. The liquid film stiffness is calculated based on the relationship between film thickness and bulk modulus of the lubricant. The lubricant film thickness equations are employed in conjunction with the load sharing concept and the empirical formulas for the maximum contact pressure in a dry rough contact are fitted for the GW model and the KE model, to evaluate the relationship between film thickness and motion velocity for the purely elastic GW microcontact model and the multiregime KE microcontact model, respectively. The comparison with experimental results shows that the KE model predicts closer total contact stiffness results than the GW model. The stiffness contributions from the solid asperity contact and lubricant film are obtained and effects of surface roughness, applied load, motion velocity, and type of lubricant on the normal contact stiffness are analyzed.  相似文献   

13.
建立陶瓷球轴承热弹流润滑的数学模型,利用多重网格法和逐列扫描法,得到陶瓷球轴承的点接触热弹性流体动力润滑完全数值解,并与普通轴承计算结果进行比较。结果表明:转速与载荷会对陶瓷轴承的接触区的压力、膜厚、温度产生影响,其中随着转速的增加,最小膜厚增加,摩擦因数减小,滚动体表面温度下降,而随着载荷的增加,最小膜厚减小,摩擦因数增大,滚动体表面温度上升;在相同的工况参数下,陶瓷球轴承的油膜压力低于普通轴承,膜厚高于普通轴承,轴承内圈、滚动体、中层油膜的温升小于钢质轴承,因而陶瓷轴承的润滑性能更好,使用寿命更长。  相似文献   

14.
The study aimed to determine the formation of an adsorption film at elastohydrodynamic lubricated (EHL) contacts and its effects on EHL film shape and friction. Experiments were conducted on an optical EHL test rig with surfaces of different surface energies. A new type of “abnormal” EHL film shape characterized with three dimples in the inlet of the contact was obtained in pure ball sliding experiments with long-chain polybutene. The adsorption layer was inferred to be the main cause for the “tri-dimple” phenomenon. The “tri-dimple” formation was examined. Under a fixed speed, a single inlet dimple gradually broke into three dimples with increasing number of ball rotation, and it happened with slight increase in friction force. Three zones, namely a central and two lateral zones, of the contact were classified and characterized with different levels of influence on the adsorption layer.  相似文献   

15.
滚动体数量会影响轴承中相邻滚动体的间距大小,而轴承制造和装配误差会造成相邻滚动体错位,这些几何位置因素会影响接触副区的回流补油和油膜成膜性能。利用三滚轮整体加载有限长线接触光弹流试验装置,在给定初始油量下,开展相邻滚子间距和错位距离对滚子弹流油膜成膜性能和补油机制的试验研究。结果发现:使用低黏度润滑油时,增加相邻滚子间距,能够提高滚子端部膜厚,但错位对滚子端部膜厚影响较小;使用高黏度润滑油时,相邻滚子间距大小只对距离端面0.25 mm较近处膜厚有影响,对距离端面1.05 mm较远处的膜厚无影响;随着错位距离的增加,距离端面0.25 mm较近处的成膜性能先增加后减小,而距离端部1.05 mm较远处的膜厚增加。  相似文献   

16.
李海英  郭峰 《机械》2010,37(9):5-8
纯挤压条件下弹流油膜的研究已证实了油膜的中央凹陷。研究利用常载荷下的钢球在较小的初始间隙下冲击附有润滑油的玻璃盘,在接触区外围出现了外围凹陷,而不是熟知的中央凹陷。研究结果表明当初始的冲击间隙较大时,油膜的压力分布和厚度以及中心压力-时间曲线中的峰值和接近结束时的中央凹陷都与以前的自由落球问题相似。随着初始的冲击间隙减小,最大压力从接触区中心转换到圆周外围区,相应地,中央凹陷变得越来越不明显而在外围区出现了圆周凹陷,进一步的数值分析,发现当油膜足够厚时在小的初始间隙条件下也出现了外围凹陷。这主要是当初始的冲击间隙变小时,中央油膜厚度比大冲击间隙条件下润滑油被"冰冻"时薄很多,中央凹陷不明显;在外围区域,表面间隙很小,局部挤压效应变强,因此形成了外围凹陷。  相似文献   

17.
应用光干涉方法,在自制的光弹流试验机上分别对纯滚动条件下点接触和线接触形成的弹流油膜进行变卷吸速度实验,并进行油膜测量。结果表明,在卷吸速度为零时都有封油现象的出现。随着卷吸速度的增加,油膜厚度增加,点接触形成的弹流油膜具有典型的马蹄形特征,线接触形成的弹流油膜在接触区端部有类似点接触的马蹄形收缩。要达到同样的最大赫兹接触压力,施加在线接触实验上的载荷要比施加在点接触实验上的载荷大40倍左右。  相似文献   

18.
Elastohydrodynamic (EHL) film thicknesses of emulsions have been measured in a rolling point contact using an optical interference method. Both water in oil and oil in water emulsions have been studied.For water in oil emulsions the experimental data suggest that EHL film thickness is almost independent of water concentration and also particle size distribution, although the bulk viscosity of the emulsions is heavily dependent upon these two variables. It is concluded that the EHL properties of such emulsions are determined almost entirely by the EHL properties of the pure oil.For oil in water emulsions, negligible EHL film formation was observed.  相似文献   

19.
Preliminary experimental work has been carried out to identify some of the boundary slip phenomena of highly pressurised polybutenes in an elastohydrodynamic lubrication (EHL) conjunction. The movement of the oil is signified using an entrapment that can be readily formed by the impact of a steel ball against a layer of oil on a glass block in an optical EHL test apparatus. The post-impact lateral movement of the entrapment was investigated under the conditions: (i) pure rolling, (ii) pure glass block sliding (steel ball stationary) and (iii) pure ball sliding (glass block stationary). It was observed that under pure rolling the entrapped oil travels within the contact region at the entrainment speed, which is correlated with EHL theory. Under pure glass block sliding conditions, the speed of the entrapped oil core is less than the entrainment speed, and in the extreme cases, this core can be nearly stationary. Under pure ball sliding conditions, the oil core moves at a speed greater than the entrainment speed. The observation indicates that the oil/steel ball interface can sustain higher shear stress than the oil/glass (chromium coated) interface and there is a boundary slip in terms of relative sliding at the latter interface under the experimental conditions. Furthermore, the amount of slip increases with an increase in the pressure. These experiments provide evidence of the existence of wall slippage, which leads to the abnormal EHL film profile characterised with an inlet dimple as reported earlier.  相似文献   

20.
The effect of the electric double layer (EDL) of friction surface on lubrication is significant under the condition of very thin lubricating film. This article presents a theoretical evaluation concerning the effect of the EDL on the film thickness and the pressure distribution of the elastohydrodynamic lubricating water film. These numerical analyses are based on the modified Reynolds equation that considers the EDL. Owing to the temperature risen readily in elastohydrodynamic lubrication (EHL) contact area, the influence of the temperature rise on the EDL effect was also investigated. The analysis results show that the EDL leads to a noticeable increase in the film thickness but has few influences on the pressure. Further, the analytical comparisons between isothermal and thermal conditions reveal that the temperature rise in the contact area weakens the effect of the EDL on the EHL film. Overall, consideration of the EDL effect gives a thicker EHL film, but once the temperature rise in the EHL regime is taken into account, the film thickness is correspondingly decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号