首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
激光跟踪仪测角误差的现场评价   总被引:6,自引:0,他引:6  
激光跟踪仪是基于角度传感和测长技术相结合的球坐标测量系统,其长度测量采用激光干涉测长方法,可直接溯源至激光波长,因此,激光跟踪仪的长度测量精度远高于角度测量精度,相对而言,测角误差就成为评价跟踪仪测量精度的重要指标。为了对现场测量激光跟踪仪的测角误差进行快速有效地评价,采用跟踪仪多站位对空间中测量区域内若干个被测点进行测量,与传统基于角度交汇原理的多站位冗余测量不同,利用各站位所观测的高精度测长值建立误差方程,并通过测长方向的矢量位移对跟踪仪测长误差进行约束,获得被测点三维坐标在跟踪仪水平角和垂直角方向上的改正值,以此来评价激光跟踪仪的测角误差。通过Leica激光跟踪仪AT901-LR进行了多站位测角误差评价实验,在现场测量条件下,跟踪仪水平和垂直方向测角误差约为0.003 mm/m(1σ),符合跟踪仪的测量误差特性。  相似文献   

2.
三维激光球杆仪是自研发的一种被动式激光跟踪仪,为了提高其测量精度,该文系统地分析了其主要误差源及补偿方法。首先,通过误差源分析,基于多体系统误差建模理论对仪器进行精度建模;其次,针对误差补偿模型,提出了简单有效的模型参数测量方法,即多齿分度台和光电自准直仪标定二维转台两测角误差,正倒镜法测量两旋转轴的不相交度,精密三轴机床测量轴系不垂直度误差;最后,完成精度补偿验证。实验结果表明,在有效测量范围内,补偿后的垂直度误差从120μm减小到28μm,X轴定位误差从20μm减小到8μm,Z轴定位误差从60μm减小到25μm。研究表明该补偿方法在不改变硬件结构的基础上能有效提高仪器的精度。  相似文献   

3.
为了提高激光跟踪仪的测量精度,分析了跟踪仪的几何结构误差,重点研究了其转镜倾斜误差的标定和修正方法。利用矢量分析和坐标转换相结合的方法建立了跟踪仪转镜倾斜误差模型,推导出了跟踪仪几何空间坐标修正公式,并基于自准直仪、多面棱体和可调反射镜建立了高精度误差标定装置。利用标定装置分析了误差标定方法,通过系统仿真研究了转镜倾斜误差对系统测角误差及最终坐标测量误差的影响。利用误差标定实验检测出的系统转镜倾斜误差约为4″,将其带入坐标修正公式,并与修正前的坐标进行了比对分析。对比结果显示,经误差修正后系统空间坐标测量误差可减小约2×10-6,验证了转镜倾斜误差标定和误差修正方法的有效性,表明利用该方法可在不改变系统硬件结构的基础上提高测量系统的测量精度。  相似文献   

4.
为了实现对精密减速器输入端和输出端角位移的精密测量,建立精密减速器角位移测量系统。对该系统的机械结构、角度测量及标定方法、基于非线性最小二乘法的误差补偿模型进行研究。通过"立式筒状"结构和圆光栅角度传感器"前置"避免了传统检测仪的弱刚度结构和轴系形变对角度测量造成的影响。使用光电自准直仪与24面棱体结合的方式离散标定圆光栅角度传感器的角位移测量误差,研究基于谐波分析的误差补偿方法,对角坐标进行补偿,进一步消除误差。实验结果显示,通过优化检测仪的结构设计,角位移测量精度达到±7″;误差补偿后,角位移最终测量精度达到±2″,满足减速器角位移测量的高精度要求,对类似测角系统也有参考价值。  相似文献   

5.
为实现大空间域激光跟踪仪的高精度测量,本文针对由转站误差导致的激光跟踪仪分时多基站测量精度难保证的问题,提出了基于多站位下单台激光跟踪仪测量误差的转站误差模型与转站参数修正的补偿方法。首先分析了激光跟踪仪测量误差的来源以及具体形式,阐述了激光跟踪仪测量误差影响空间任意点测量精度的具体形式;其次分析了激光跟踪仪的随机测量误差和系统测量误差对多基站转站参数求解精度的影响。在此基础上,建立了考虑随机、系统测量误差的激光跟踪仪多基站转站误差模型和转站参数误差补偿模型。蒙特卡洛仿真结果表明:当激光跟踪仪的长度测量误差为0.5μm/m,角度测量误差为5μm+6μm/m时,最大转站误差为0.174 7mm,补偿后最大转站误差为0.04mm,转站精度提高了77%。分时多基站转站测量实验结果表明:直接转站测量时最大转站误差为0.054 2mm,补偿后转站误差为0.033 1mm,转站精度提升了38.9%。激光跟踪转站补偿后测量精度有明显的提高。  相似文献   

6.
孙秀照  雷贤卿  王笑一 《机电工程》2023,(10):1633-1640
误差补偿是提高圆光栅测角精度的常用手段。一些机床和精密仪器由于没有位置测量元件误差补偿功能,无法进行圆光栅的误差在线补偿。针对这一问题,提出了一种中继式的圆光栅测角误差实时补偿方法。首先,分析了圆光栅测角误差的补偿原理,建立了谐波拟合函数和圆光栅测角误差补偿模型;然后,进行了误差补偿模块的硬件选型,设计了以差分芯片为核心的信号转换电路,包括差分信号转单端信号电路和单端信号转差分信号电路,开发了误差补偿模块的嵌入式软件,将所设计的误差补偿模块插入到圆光栅的信号输出通道,建立了基于中继式误差补偿模块的试验系统;最后,采用雷尼绍校准装置采集了圆光栅的原始误差数据,使用谐波函数对测角误差数据进行了拟合,应用误差补偿模型,利用误差补偿硬件模块,对圆光栅测角误差进行了在线补偿试验。研究结果表明:对测角误差最大值为134.59″的圆光栅进行补偿后,其误差最大值可减小到12.62″,可见采用误差实时补偿方法可以显著提高圆光栅测角精度。  相似文献   

7.
圆光栅安装偏心误差是影响圆光栅角度测量精度的关键因素,偏心误差补偿是提高角度测量精度的重要方法。为准确辨识和补偿圆光栅安装偏心误差参数,在建立的圆光栅偏心误差模型基础上提出了一种双读数头平均误差补偿方法,对读数误差进行修正,并对测量与修正模型进行仿真实验。使用正23面棱体与光电自准直仪搭建实验装置,对所提方法的测量补偿效果进行验证。实验结果表明:采用所提出的补偿修正方法能够有效补偿圆光栅读数头读数偏差,圆光栅的测角精度达到1″以内。  相似文献   

8.
转台工作面角位置测量装置误差分析与补偿   总被引:1,自引:0,他引:1       下载免费PDF全文
针对特定转台轴端角位置检测误差不能反映实际产品工作面空间角位置的问题,介绍了一种以圆光栅和水平电容传感器作为测角元件的转台工作面空间角位置定位测量装置。以提高空间测角精度为目的,重点对装置各项误差因素进行归类分析。除光栅和传感器分别存在的分系统测角误差外,测量装置还存在转轴与测量基面不平行、传感器敏感轴与测量基面不平行等误差项。为修正测角系统误差,根据圆光栅旋转面、传感器敏感轴、转轴轴系、测量基面的空间几何关系建立数学模型,分析系统误差影响因素。最后利用分度误差在0.3″高精度转台对校准装置进行标定,并利用径向基函数(RBF)神经网络建立误差补偿模型,对系统测角精度进行修正,使系统最大误差值由13.75″下降至2.9″,满足了3″以内的测角精度需求。  相似文献   

9.
考虑飞秒激光跟踪仪仪器轴系的几何误差会影响仪器的指向精度并最终影响坐标测量精度,本文研究了激光光轴与竖轴的几何误差对仪器测量精度的影响。提出了激光光轴与竖轴的同轴度标定方法,以降低其不重合带来的跟踪测量误差。首先,基于几何光学原理建立了光轴与竖轴的几何误差模型,分别分析了光轴与竖轴的倾斜与平移误差对仪器测角精度的影响。然后,针对设计的仪器提出了基于旋转成像原理的光轴与竖轴同轴度的检测方法,并设计了一套同轴度检测装置。最后,基于该检测装置,通过调节两组双光楔完成了激光光轴与竖轴的倾斜与平移误差的标定。结果显示,经标定校准后激光光轴与竖轴的角度误差为3.4″;平移误差为26.1μm,得到的结果为仪器后续建立误差补偿模型奠定了基础。  相似文献   

10.
提出了一种新的并联机器人精度标定算法,较之于传统的借助与激光跟踪仪的测量标定方法,该标定算法只需测量获得z轴方向的单项位置误差,即可进行参数误差识别,忽略了用激光跟踪仪测量时,安装靶球带来的制造、装配误差,能有效地提高并联机器人的标定精度。对该算法进行了推导以及Matlab仿真实验。  相似文献   

11.
熊平 《机电工程》2014,(2):139-144
针对大型数控龙门铣床几何误差的问题,建立了大型数控龙门铣床的几何误差模型,分析了大型数控龙门铣床的几何误差源;利用API(T3)激光跟踪仪高精度大尺寸的测量特点及数据处理能力,提出了X、Y、Z轴线位移误差、角位移误差及各轴间垂直度误差的辨识算法,通过激光测量与计算准确地辨识了大型数控龙门铣床的几何误差;建立了大型数控龙门铣床加工空间几何误差数学模型,采用基于对象的事件驱动机制的程序设计语言Visual Basic开发了几何误差补偿软件,实现了几何误差补偿;现场检测了大型数控龙门铣床空行程平面运动轨迹及工件的平面度。研究结果表明,该方法使平面加工精度提高了50.77%,并验证了几何误差模型的正确性及几何误差补偿方法的有效性。  相似文献   

12.
机载设备安装姿态视觉校准中的靶板标定   总被引:1,自引:0,他引:1  
基于飞机机载设备安装姿态视觉校准系统Archer-M的研发,提出针对系统中姿态测量辅助靶板的标定方法。首先,利用摄像机从不同方位拍摄靶板图像,在相差一个尺度因子的情况下确定靶点位置关系。然后,利用单个发光二极管(LED)靶点的多次精确移动和图像叠加的方法恢复绝对尺度,求解靶点的相对关系。最后,通过精确控制靶板的位姿运动,利用运动前后各坐标系之间的相对关系,求解出“靶/座"相对位姿,并进一步针对只用于物体姿态测量的靶板,提出了分别沿两个垂直方向运动的简化“靶/座"标定方法,从而大大降低了标定过程中对标定设备的要求。实验结果表明:距离为3~12 m时,姿态角度的测量标准差为0.004~0.017°,姿态测量精度与激光跟踪仪相当。  相似文献   

13.
目的: 为了实现对工件进行自动高效地测量,建立了激光制导测量机器人系统,研制了测量机器人样机。对测量机器人的光靶自动跟踪装置旋转轴偏心误差和光靶与两轮中心连线误差进行了研究。方法:首先,介绍了基于“光束运动-光靶跟踪”理论的激光制导测量机器人技术和原理。接着,根据系统原理,研制了实验样机,并给出其理想的几何关系。然后,推出了旋转轴偏心误差和光靶与两轮中心连线误差几何误差数学模型。最后,利用三坐标测量机与激光制导测量机器人系统对样机进行了比对实验。结果:实验结果表明:光靶中心偏离理想位置的误差(x轴)为0.13mm。结论:对激光制导测量机器人移动反馈控制系统的设计和实现具有指导性作用。  相似文献   

14.
数字天顶仪中倾角仪参数的标定   总被引:1,自引:0,他引:1  
针对运用数字天顶仪进行天文定位时旋转轴与垂直轴之间存在的轴系偏差,提出了高精度天顶仪倾角补偿方法。从数字天顶仪倾角补偿原理出发,引入了倾角仪双轴尺度系数、双轴交角等参数对倾角仪的输出值进行修正,然后提出了一种双轴倾角仪参数的标定方法。分析了旋转角度对于参数标定的影响,运用实验数据对标定方法进行了论证。结果显示:旋转角度会直接影响CCD图像传感器安装角度的标定值。另外,倾角仪参数的引入提高了数字天顶仪的定位精度,当旋转角度的误差值在2°以内时,标定参数的误差对定位结果的影响非常小。  相似文献   

15.
This paper presents a new kinematic model, a parameter identification procedure and a sensitivity analysis of a laser tracker having the beam source in the rotating head. This model obtains the kinematic parameters by the coordinate transformation between successive reference systems following the Denavit–Hartenberg method. One of the disadvantages of laser tracker systems is that the end-user cannot know when the laser tracker is working in a suitable way or when it needs an error correction. The ASME B89.4.19 Standard provides some ranging tests to evaluate the laser tracker performance but these tests take a lot of time and require specialized equipment. Another problem is that the end-user cannot apply the manufacturer’s model because he cannot measure physical errors. In this paper, first the laser tracker kinematic model has been developed and validated with a generator of synthetic measurements using different meshes with synthetic reflector coordinates and known error parameters. Second, the laser tracker has been calibrated with experimental data using the measurements obtained by a coordinate measuring machine as nominal values for different strategies, increasing considerably the laser tracker accuracy. Finally, a sensitivity analysis of the length measurement system tests is presented to recommend the more suitable positions to perform the calibration procedure.  相似文献   

16.
适合于微细加工的外差探测技术及应用   总被引:3,自引:2,他引:1  
本文详细地讨论了外差干涉仪的两个主要问题,即干涉仪的横向定位问题和非线性误差分析及其误差补偿问题.首先,提出了一种新颖的解析方法实现干涉仪亚微米级的高精度定位.该方法首先建立了测量光束扫过台阶边缘时测量相位渐变数学模型,并讨论了它与激光束分布的关系.文章利用以上数学模型对测量相位数据进行了详细地分析,实现了在一般激光束径时,干涉仪的定位精度为亚微米量级.另一方面,文章详细地分析了共光路干涉仪三个主要误差源.分析结果表明:由Wollaston棱镜引起的误差主要是二阶误差,而由激光束的椭圆偏振化引起的误差为一阶误差.同时我们发现:金属反射镜的方位误差可以使线偏振光经反射后变为椭圆偏振光,该椭圆偏振光具有不正交性和不相等偏心度,文章首次详细地分析了这种不正交性和不相等偏心度与反射镜方位误差的关系及其由此产生的非线性误差.最后,文章分析了干涉仪的误差补偿措施以提高整个干涉仪的测量精度.  相似文献   

17.
光束平差在激光跟踪仪系统精度评定中的应用   总被引:4,自引:2,他引:2  
对自主研制的激光跟踪仪的精度评定进行研究,以期解决大尺寸空间坐标测量系统的空间坐标精度难于评定的问题.考虑现场环境条件、仪器状态和操作者技能等因素对测量精度影响都很大,提出了基于光束平差原理对激光跟踪仪系统进行精度评定的方法.通过Matlab软件对激光跟踪仪的精度评定进行了仿真,仿真结果显示光束平差法能客观地反映激光跟踪仪的测量精度.另外,使用Faro生产的激光跟踪仪进行了实物实验,实验结果显示其水平角精度σH为1.97″,垂直角精度σV为2.61″,测距精度σD为3.75×10-6,对比Faro生产的激光跟踪仪精度(σH =2.0″;σV =2.0″;σD=4 μm)可证明采用光束平差法评定自主研发的激光跟踪仪测量精度是正确、可行的.该方法为探索激光跟踪仪新的应用技术、开展面向对象的测量不确定评定奠定了基础.  相似文献   

18.
激光跟踪视觉导引测量系统的全局校准方法   总被引:5,自引:3,他引:2  
针对柔性装配中现有激光跟踪测量系统存在效率低、成本高、自动化程度低等问题,提出用单目视觉系统联合激光跟踪仪实现大尺寸组合式自主导引测量.为实现该系统的全局校准,提出了一种新的基于平面的全局校准方法,该方法通过获取靶标平面分别在视觉系统和激光跟踪仪坐标系中的平面方程,求解两坐标系间转换矩阵,完成系统全局校准.建立了数学模型,进行了算法仿真和全局校准实验.实验中测量30个不同位姿的平面靶标,并进行全局校准.结果表明,该方法操作简单,稳定性强,有实际应用价值,校准后平面法向量夹角、原点到平面距离的RMS误差分别为0.13°和1.50 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号