首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
根据溶胀和温胀引起的定子变形相似特点,提出采用温度比拟法来研究橡胶定子溶胀对密封性能的影响;建立定转子刚柔接触有限元模型,分析定子溶胀引起的变形和接触压力。研究结果表明:定转子存在初始过盈,接触压力随着溶胀率的增加而显著增大;定转子存在初始间隙,定子在一定的溶胀率条件下,定转子也能实现密封效果。为实现定转子密封性能,可根据定子的溶胀率,选取合适的初始过盈值或间隙值。  相似文献   

2.
根据溶胀和温胀引起的定子变形相似特点,提出采用温度比拟法来研究橡胶定子溶胀对密封性能的影响;建立定转子刚柔接触有限元模型,分析定子溶胀引起的变形和接触压力。研究结果表明:定转子存在初始过盈,接触压力随着溶胀率的增加而显著增大;定转子存在初始间隙,定子在一定的溶胀率条件下,定转子也能实现密封效果。为实现定转子密封性能,可根据定子的溶胀率,选取合适的初始过盈值或间隙值。  相似文献   

3.
《机械科学与技术》2016,(6):826-832
为了研究煤层气排采中螺杆泵定、转子的接触应力状况,以螺杆泵转子近圆心位置的两点为对象,建立了运动方程,并比较了在纯滚动状态下的有限元分析结果与赫兹(Hertz)接触应力的误差,得出与赫兹(Hertz)接触应力相近的结果,在过盈量为0.05 mm至0.3 mm范围内,最大误差值为2.46%,最小误差值仅为0.048%;考虑定、转子接触非线性,用罚函数法引入接触界面约束条件,用ANSYS Workbench软件来求解定、转子接触应力。结果表明,螺杆泵在工作时,定子与转子的接触应力受接触位置、过盈量的影响显著;当定、转子摩擦系数不为0时,摩擦系数对接触应力的影响不敏感;当转子转速较高时,转速对接触应力的影响不敏感。  相似文献   

4.
赵文军 《润滑与密封》2023,48(12):40-45
螺杆泵定子与转子间接触压力对其使用寿命至关重要,而定子与转子间过盈量和工作压力对螺杆泵定子与转子间接触压力有重要影响。建立螺杆泵的三维模型,采用有限元方法研究螺杆泵装配条件下不同过盈量(0.4~0.7 mm)和工作压力(0.03、0.06、0.09 MPa)对螺杆泵定子与转子接触压力的影响。结果表明:随着过盈量的增大,定子与转子的接触压力增大,定子与转子的接触面积也随之增大,且接触压力的最大值出现在密封线吸入端的螺旋段部分;但随着过盈量的增加,接触压力的增大趋势变缓;定子与转子的接触压力随着工作压力的提高而增大,工作压力导致螺杆泵的最大接触压力向排出端偏移,接触压力的最大值出现在靠近介质排出端的螺旋段上。  相似文献   

5.
单螺杆泵密封性能的有限元分析   总被引:6,自引:4,他引:2  
通过理论分析,得出了单螺杆泵压力的产生和传递规律.采用有限元方法,建立了单螺杆泵的二维模型,分析了螺杆泵定子橡胶与转子间腔体压差、腔体压力以及过盈量对接触压力的影响,得出了压差与接触压力、腔体内压力与接触压力和最大密封压力及过盈量与最大压力的关系.结果表明:压差的增大使接触压力增大;腔体内压力的增大使接触压力减小,最大密封压力降低;过盈量的增加使螺杆泵的最大压力增大.  相似文献   

6.
为了充分认识螺杆泵的密封特性与举升性能,采用数值仿真软件对平面螺杆泵进行接触非线性分析,研究不同腔室压力下压差与接触应力的关系,并结合密封准则求出不同腔室压力下的临界密封压力,绘制出两者间的关系曲线,然后,研究了过盈量和橡胶硬度与临界密封压力之间的关系,给出了不同过盈量和橡胶硬度下的临界密封压力曲线,并采用多项式拟合方法给出临界密封压力与腔室压力之间的关系式。紧接着根据螺杆泵压力传递规律,分析了过盈量和橡胶硬度与螺杆泵扬程之间的定量关系,并研究了举升压力随密封腔数的变化规律。研究结果表明:接触应力随压差的增大而增大,随腔室压力的增大而减小;腔室之间的临界密封压力随腔室压力的增大而较小,且减小的速度逐渐变快,但此规律不受过盈量和橡胶硬度大小的影响;在相同腔室压力下,过盈量和橡胶硬度越大,临界密封压力就越大,螺杆泵的密封性能就越好;螺杆泵的扬程随过盈量的增大而呈线性增大,随橡胶硬度的增大而呈非线性增大;螺杆泵的举升压力随密封腔数的增加而增大,但增速逐渐变缓,最终达到一个最大值,这个最大值就是螺杆泵所能达到的最大举升压力,然后通过螺杆泵水力特性试验验证了结果的合理性。研究结果可为螺杆泵的研发...  相似文献   

7.
螺杆泵定转子过盈接触三维有限元分析   总被引:2,自引:0,他引:2  
常规单螺杆泵包含两个主要的部件即橡胶定子和金属转子,定子与转子之间的相互作用是影响螺杆泵性能的主要因素之一.采用非线性有限元方法分析了螺杆泵定转子在初始过盈下的变形,结果表明转子在过盈力的作用下发生扭转与偏转;而且在初始过盈作用下圆弧段过盈小于初始过盈值,两条直线段的过盈并不相等.  相似文献   

8.
基于ANSYS的螺杆泵内部压力分布有限元分析   总被引:1,自引:0,他引:1  
对于螺杆泵的单级密封压力,目前广泛采用取平均值法,导致泵内压力分布呈线性变化,不能正确反映其实际分布规律.本文借助ANSYS有限元分析软件建立螺杆泵定转子二维有限元接触模型,模拟不同过盈量下的临界密封压力;分析不同温度、压力下定子衬套橡胶的变形量,利用“有效过盈量”计算不同温度、压力下的临界密封压力,并根据临界密封压力确定螺杆泵内部压力分布.结果表明:泵内压力分布是由泵排出口压力和泵各级容腔的单级密封能力决定的,压力分布在排出口处集中,随着排出口压力增加向吸入口传递;当压力传到吸入口且前两级容腔之间的压差大于其密封能力时,泵被“击穿”,此时应更换更大型号的泵.  相似文献   

9.
为研究采油螺杆泵的容积效率,建立螺杆泵有限元仿真模型,使用流固耦合方法分析单级压差对定子橡胶的变形规律,推导了对螺杆泵定子密封和泄漏影响较大XY方向变形量的计算式。根据定子橡胶变形量和初始过盈量,得到螺杆泵泄漏量,计算出容积效率,并对其进行试验验证;利用该方法,分析了螺杆泵定子导程、初始过盈量、偏心距等结构参数和单级压差、转速、流体黏度等工作参数对容积效率的影响规律,结果表明:容积效率随定子导程的增加而降低,在压差为0.6 MPa下容积效率由47%降至30%;随着初始过盈量的增加而升高,在压差为0.6 MPa下容积效率由31%增至71%;随着单级压差的增加而降低,在过盈量为0.28 mm下容积效率由98%降至16%;随着转速的增加而升高,在过盈量为0.178 mm下容积效率由8%增至69%;随着流体黏度的增大而升高,在过盈量为0.178 mm下容积效率由38%增至85%;随偏心距的增大变化不大,容积效率由96%降至94%。  相似文献   

10.
以镶嵌式机械密封为研究对象,通过受力分析和热传导方程,将热、力两个物理场进行耦合求解,建立机械密封动环组件热力耦合仿真模型。基于热力耦合模型计算不同应力情况下端面变形量和不同过盈量下的结合面接触应力、端面变形量,并分析动环厚度对端面温度场、应力分布以及端面变形量的影响。结果表明,热应力对端面变形的影响大于结构应力,故不能忽略热应力对机械密封组件的影响;动环过盈量增大使得端面变形量和结合面接触应力逐渐增大,动环厚度的增大使得最大温度呈下降趋势,最高温度出现在动环内径处,端面间隙由收敛型转变为发散型。因此,在对机械密封结构进行设计时,采用较小的过盈量和动环厚度,可以减少动环端面的变形量。  相似文献   

11.
在采油过程中,螺杆泵定子容易因为磨损而导致失效,针对这一问题,对螺杆泵常规定子与等壁厚定子的摩擦特性进行了研究。首先,利用有限元分析软件对两种定子进行了热力耦合仿真;然后,分析了两种定子在工作过程中的摩擦应力状态,以及过盈量和温度对其摩擦性能的影响;最后,对两种定子的摩擦特性进行了综合对比,分析了两种定子分别在过盈量和温度范围内的适宜工作区间。研究结果表明:与常规定子相比,等壁厚定子的摩擦应力分布更为均匀;随着过盈量和温度的升高,两种定子的摩擦应力均呈逐渐增大的趋势;当过盈量低于0.3 mm,温度高于40℃时,等壁厚定子的摩擦性能优于常规定子;两种定子摩擦特性的对比研究结果对于定子结构设计优化及不同工况下定子样式选取具有一定的参考价值。  相似文献   

12.
针对高速脂润滑滚动轴承密封过早失效的问题,建立油封的热-应力耦合有限元模型,研究油封主要参数和轴承工况参数对油封唇口的最高温度和最大接触应力的影响规律,对油封结构参数进行优化,利用强化温升漏脂试验台进行试验验证。结果表明:高速脂润滑滚动轴承油封密封性能的研究应该考虑温度的影响;唇口的最高温度随轴向过盈量、橡胶材料硬度、密封面摩擦因数、轴承转速和轴承腔内温度的增大而增大;最大接触应力随轴向过盈量和橡胶材料硬度的增大而增大,随密封面摩擦因数、轴承转速和轴承腔内温度的增大变化不大;密封结构优化后,平均漏脂率下降了56.7%,平均温升下降了54.3%。  相似文献   

13.
三头单螺杆泵定转子接触磨损分析   总被引:2,自引:0,他引:2  
采用ANSYS软件对短幅内摆线外等距曲线及短幅外摆线内等距曲线2种线型的三头单螺杆泵在过盈及压差作用下的变形、受力及接触情况进行有限元分析,得到定转子接触时变形及应力分布云图,比较2种线型三头单螺杆泵的密封性能.结果表明:过盈量的存在是实现螺杆泵密封的重要条件;压差的存在使定子橡胶发生较大的变形,应力应变值也相应增加;短幅内摆线外等距曲线三头单螺杆泵密封性能优于短幅外摆线内等距曲线三头单螺杆泵.  相似文献   

14.
水下采油树油管悬挂器密封性能分析   总被引:1,自引:0,他引:1  
以水下采油树油管悬挂器密封结构为研究对象,建立金属密封圈凸缘处的接触面为半圆形接触面(密封Ⅰ)和倾斜接触面(密封Ⅱ)2种形式的力学模型,利用ABAQUS软件建立其有限元模型,分析过盈量、压力和温度对金属密封圈最大Mises应力和最大接触应力的影响及不同过盈量时接触应力在接触宽度上的分布。结果表明:密封Ⅰ的最大Mises应力和最大接触应力都随着过盈量、工作压力和温度的增加而增加,而密封Ⅱ的最大Mises应力和最大接触应力呈现不同的变化趋势;密封Ⅰ能够提供较大的接触应力,具有很强的密封能力,但密封宽度相对较小;一定的过盈量时,密封Ⅱ能达到较大接触宽度,保证良好的密封性能。  相似文献   

15.
为研究高温采油工况下螺杆泵定子衬套的磨损情况,将定子橡胶在高温含砂原油中进行摩擦学试验,测出橡胶的摩擦因数。运用有限元分析方法,对螺杆泵等壁厚定子橡胶衬套进行接触非线性计算,研究工作压差、过盈量以及摩擦因数等多因素对定子衬套磨损的影响。分析结果表明:在工作温度60℃、压差0.5MPa的工况下,橡胶衬套最大等效应力和等效应变出现在定子衬套外侧,最大等效应力和等效应变随着过盈量和摩擦因数的增大而增大,摩擦因数对定子橡胶衬套的磨损影响相对较小,选择合适的过盈量有助于减小磨损,提高效率。  相似文献   

16.
为探究驱动套筒位移载荷对密封体外凸缘接触应力的影响,构建密封总成力学模型,采用该模型可以直观地描述密封总成的受力情况。利用ANSYS有限元分析软件,研究不同位移载荷对密封总成外凸缘接触应力的影响。研究结果表明:当环槽宽度、外凸缘半径不变时,接触应力随着过盈量的增大而增大;当环槽宽度、过盈量不变,外凸缘半径为3.5 mm时,接触应力达到最小值;在相同外凸缘半径条件下,接触应力随着位移载荷的增大而增大,且增幅有上升的趋势;外凸缘半径、过盈量不变时,接触应力随着环槽宽度的增大逐渐减小,减幅相对较小;环槽宽度相同时,接触应力随位移载荷的增大而均匀增大。研究结果可为密封总成结构的设计和位移载荷的确定提供理论指导。  相似文献   

17.
为研究稠油开采中常规螺杆泵定子衬套的接触磨损,通过摩擦试验研究在不同转速和载荷下,定子衬套所用丁腈橡胶在高温含砂稠油中摩擦因数的变化规律。实验结果表明:定子橡胶的摩擦因数随着转数的增加先增大后减小,之后几乎保持不变;随着法向载荷的增大,定子橡胶的摩擦因数先减小后增大。以试验测得的摩擦因数为依据,利用有限元分析方法,对高温含砂稠油中螺杆泵定转子之间的接触进行分析,研究摩擦因数、过盈量、工作压差等因素对定子衬套接触磨损的影响。分析结果表明:衬套的剪应变随着衬套摩擦因数、过盈量、工作压差的增大而增大;位移量随着摩擦因数的增大而减小,随着过盈量的增大而增大;工作压差不但影响定子衬套内轮廓接触位置的磨损,还加剧衬套外壁面的黏着磨损。  相似文献   

18.
单螺杆泵定子橡胶的接触磨损分析   总被引:2,自引:1,他引:2  
杨秀萍  郭津津 《润滑与密封》2007,32(4):33-35,39
采用有限元法对常规单螺杆泵和等壁厚定子单螺杆泵的定子橡胶和螺杆进行接触非线性计算,得到了螺杆与定子在不同位置接触时变形及剪应变云图;分析了定子接触磨损的特点及规律,并进行了比较。结果表明:常规单螺杆泵定子与螺杆在圆弧顶接触时,剪应变和变形最大,定子两圆弧对角磨损最严重,同时定子的磨损随过盈量增大而明显增大;而等壁厚螺杆泵则在中间位置接触时,剪应变和变形最大,且最大剪应变位于定子的外表面。由于目前还没有能够直接对实际工况下的定子橡胶的变形和接触状态进行测试的有效手段,本文为定子的优化设计提供了理论基础和有效的数值模拟方法。  相似文献   

19.
为了预防采油螺杆泵定子衬套烧毁事故的发生,研究定子衬套摩擦生热问题。采用具有温度和位移自由度的耦合单元,建立了定子衬套摩擦生热的双向热力耦合模型。通过有限元模拟发现,当过盈量和摩擦系数大于某一数值时,定子衬套的温度出现急剧升高的现象,导致衬套烧毁,并且等壁厚定子衬套的温升大于常规定子衬套。分析结果可用于改进定子衬套的设计。  相似文献   

20.
基于ABAQUS/Explicit中热-力耦合模块,以某风电机组中发电机的转子-球轴承为研究对象,采用加热转子轴颈使其膨胀的方式仿真转子轴颈与轴承内圈过盈配合,同时引入联轴器不对中产生的动态力,建立转子-球轴承接触动力学有限元模型。分析出转子球轴颈与轴承过盈配合接触面的接触压力、滑移速度及滑移量的分布与大小。通过分析过盈量大小及联轴器对中情况对过盈配合面接触状态的影响,结果表明:过盈量大小对过盈接触面滑移有较大影响,随过盈量增大,滑移量逐渐减小,减少速率先快后慢;不对中时前端轴颈接触面较后端滑移严重且不对中合力与重力方向相同时对应的前端局部处滑移非常严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号