首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 124 毫秒
1.
This work presents studies on the antiwear, antifriction, and extreme pressure properties of motor oil dispersed with MoS2 nanoparticles. Commercial oil (SAE 20W-40 grade) is dispersed with stabilized MoS2 nanoparticles in 0.25, 0.5, 0.75, and 1 wt%. The test oils are tested for antiwear, antifriction, and extreme pressure properties on a four-ball wear tester. The wear and friction offered by nanolubricants has decreased remarkably compared to the commercial base oil. The weld load and load wear index of oils dispersed with nanoparticles were improved substantially compared to the commercial base oil. Metallographic studies conducted on the wear balls from the extreme pressure test show that nanoparticles are deposited on the worn area along with additives in the oil, thereby preventing welding of the surfaces. An optimum weight fraction is arrived at for best performance. A synergy between the additives in the oil and dispersed nanoparticles has been observed, resulting in less dispersion for best results. It is found that beyond an optimum weight percentage of nanoparticles, the trends tend to reverse, resulting in greater wear and friction.  相似文献   

2.
Butylammonium dibutylphosphate and tetrabutylammonium dibutylphosphate ionic liquids (ILs) were evaluated as antiwear additives for steel-on-aluminum contact in three different base oils, a polyalphaolefin, an ester oil and an IL 1-methy-3-hexylimidazolium hexafluorophosphate, respectively, with similar viscosity and different polarities. The friction experiments were carried out on an Optimal SRV-IV oscillating reciprocating friction and wear tester at room temperature. Results indicate phosphate ILs can effectively improve the tribological properties of the base oil, especially the antiwear property, as additives for steel/aluminum contacts. For the base oils PAO10 and PAO40 with different viscosities, the higher viscosity of PAO40 can be beneficial to reducing the friction coefficient. The worn surface morphologies and chemical compositions of wear scars were analyzed by a JSM-5600LV scanning electron microscope and PHI-5702 multifunctional X-ray photoelectron spectrometer (XPS). The XPS analysis results illustrate that the phosphate IL additives in the base oils with different polarities exhibit the same tribological mechanism. A synergy exists between the adsorbed layers and boundary-lubricating films generated from the tribochemical reaction of IL and the substrate surface, which may reduce the friction coefficient and wear volume of the friction pairs.  相似文献   

3.

The efficacy of oil blends containing zinc dialkyl dithiophosphate (ZnDTP) and molybdenum (Mo)-complex additives to improve the tribological properties of boundary-lubricated steel surfaces was investigated experimentally. The performance of oil blends containing three different types of Mo-complex additives of varying Mo and S contents with or without primary/secondary ZnDTP additions were investigated at 100°C. The formation of antiwear tribofilms was detected in situ by observing the friction force and contact voltage responses. Wear volume and surface topography measurements obtained from surface profilometry and scanning electron microscopy studies were used to quantify the antiwear capacity of the formed tribofilms. The tribological properties are interpreted in terms of the tribofilm chemical composition studied by X-ray photoelectron spectroscopy. The results demonstrate that blending the base oil only with the Mo-compound additives did not improve the friction characteristics. However, an optimum mixture of Mo complexes and ZnDTP additive provided sufficient amounts of S and Mo for the formation of antiwear tribofilms containing low-shear strength MoS 2 that reduces sliding friction. In addition, the formation of a glassy phosphate phase due to the synergistic effect of the ZnDTP additive enhances the wear resistance of the tribofilm. This study shows that ZnDTP- and Mo-containing additives incorporated in oil blends at optimum proportions improve significantly the tribological properties of boundary-lubricated steel surfaces sliding at elevated temperatures.  相似文献   

4.
Antiwear Properties of Phosphorous-Containing Compounds in Vegetable Oils   总被引:3,自引:0,他引:3  
Antiwear properties of vegetable oils were investigated under boundary lubrication conditions using the four-ball wear test (ADTM D 4172). Additive-free vegetable oils exhibit similar antiwear properties, which are superior to those of additive-free mineral oils. Phosphorus-containing compounds such as zinc bis(dialkyldithiophosphate) and dialkyl phosphonates improve the antiwear properties of vegetable oils. The effect of the additives on wear reduction was found to depend on the peroxide value of the base oil. It is considered that peroxides decompose the antiwear additives to less active forms. The formation of peroxides by the autooxidation of vegetable oils was observed even at room temperature. Sunflower oil exhibits good oxidation stability, which may promise success in various applications.  相似文献   

5.
采用黏度测试仪测定新油及3种不同服役阶段润滑油的黏度,采用UMT-II摩擦磨损试验机考察其摩擦学性能,并同时考察3种在用润滑油添加抗磨添加剂后的摩擦学性能。研究结果表明:润滑油的黏度随着运行里程数的增加呈现先降后增的趋势;随润滑油运行里程数的增加,润滑油的摩擦因数增大,导致试验钢球的磨损量也增加;抗磨添加剂对不同服役阶段的润滑油的抗磨性能影响程度不同,在磨合磨损期和正常磨损期,加入抗磨添加剂后并不能改善润滑油的抗磨性能,而在异常磨损期,抗磨添加剂的加入可较好地改善润滑油的抗磨性能。  相似文献   

6.
硫、磷系添加剂复合使用在菜籽油中的抗磨性能研究   总被引:1,自引:0,他引:1  
以菜籽油为基础油,在四球摩擦磨损实验机上分别考察丁两组硫系和磷系添加剂T321与T304、T321与T307复合使用对菜籽油的抗磨性和极压性的影响。结果表明,在菜籽油叶:加入添加剂T321与T304能更好地提高菜籽油的抗磨性能和极压性能。  相似文献   

7.
陈爽  杨军 《润滑与密封》2007,32(7):48-50
利用四球摩擦磨损实验机考察了油酸铜修饰CuO纳米颗粒作为润滑油添加剂的抗磨性能,并用扫描电子显微镜(SEM)和X-射线光电子能谱(XPS)等对钢球磨损表面进行了分析。摩擦磨损试验结果表明,当添加质量分数仅为0.025%时,油酸铜修饰CuO纳米颗粒作为润滑油添加剂即能够明显提高基础油的抗磨能力。SEM及XPS分析结果表明,油酸铜修饰CuO纳米颗粒作为润滑油添加剂在摩擦过程中形成了一层富含Cu2O和Fe2O3的化学反应膜,正是这层膜的存在使得其表现出良好的抗磨性能。  相似文献   

8.
几种羟基脂肪酸在菜籽油中的润滑行为研究   总被引:6,自引:0,他引:6  
利用四球摩擦磨损试验机,考察了实验室合成的几种羟基脂肪酸在菜籽油中的减摩抗磨和极压性能。试验结果表明:这些含氧添加剂具有一定的减摩抗磨能力,但对菜籽油的极压性能的没有影响。双羟基脂肪酸比单羟基脂肪酸的减摩抗磨效果更为明显;烷基链较长的羟基甘二酸比羟基十八酸的减摩抗磨性能略好。  相似文献   

9.
通过Mann ich合成了2种有机环胺的硫磷酸酯衍生物,在四球摩擦磨损试验机上研究了它们作为菜籽油添加剂的摩擦学性能。实验结果表明,该类化合物具有良好的极压抗磨性能,能提高菜籽油的极压抗磨性能。通过用X-射线光电子能谱(XPS)分析了钢球磨损表面典型元素的化学状态,显示在摩擦过程中,钢球表面形成了一层含硫、磷无机膜和含氮的有机膜。  相似文献   

10.
苯并三氮唑羧酸衍生物和磷酸三丁酯的摩擦学协同性能   总被引:1,自引:0,他引:1  
合成了一种新型无磷苯并三氮唑衍生物(BTB),利用四球摩擦磨损试验机考察了单剂BTB、磷酸三丁酯(TBP)以及不同配比的BTB和TBP的复合添加剂在液体石蜡中的摩擦磨损性能;用带散射能谱的扫描电镜分析了磨损表面形貌和元素分布。结果表明:所合成的BTB添加剂能提高基础油的承栽能力和减摩、抗磨性能,并且与TBP具有协同作用;在摩擦过程中发生物理、化学吸附的同时,与金属表面发生摩擦化学反应,生成一层复合膜,从而起到了极压抗磨作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号