首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
微装配正交精确对准系统的设计   总被引:1,自引:1,他引:0  
针对平板类零件微装配系统设计过程中面临的问题,提出采用正交光学对准机构来实现用人机协同的微装配系统对微小型平板类结构件的高精度装配,并分析计算高精度对准机构模块产生的误差.建立了基于显微机器视觉及正交光学对准的微装配系统平台,用本文提出的方法进行了微装配实验,结果显示本装配系统在装配的一致性与装配效率方面有较大的改善与提高.提出的光学对准方法可有效地用于平板结构的硅微MEMS器件和非硅MEMS器件等集成的复杂微小型异构机电系统的装配,设计的平台具有很好的开放性和可移植性.棱镜正交对准机构产生0.001°的角度误差时,对准理论偏差小于0.98 μm,实际实验中微装配平台系统装配精度小于5μm,满足平板类微小型结构件装配一般精度需求.  相似文献   

2.
微器件装配系统与关键技术   总被引:5,自引:2,他引:3  
微装配技术是实现组合结构的微机械电子学系统的关键技术之一。本文介绍了目前两种典型的可以实现不同功能的微器件装配系统以及设计微器件装配系统的关键技术。  相似文献   

3.
针对MEMS器件中平板类微小型零件轻、小、薄的特点,搭建了基于单目显微视觉的真空吸附式微装配系统。通过研究微小型零件装配过程中的抓取方式、运动控制以及显微视觉定位等关键技术问题,制订了基于示教再现与显微视觉反馈相结合的平板类微小型零件自动化装配总体方案,并利用VC++平台开发了自动化装配程序。经实验验证,该微装配平台不仅可以实现微小型零件的高精度检测定位以及完成不同形状和尺寸的平板类微小型零件精准吸附,而且通过示教再现和视觉伺服相结合的控制方式实现了微小型零件的自动化装配,从而为提高微装配系统的装配精度和装配质量打下了坚实的基础。  相似文献   

4.
微器件装配系统总体方案研究   总被引:2,自引:2,他引:0  
微器件装配技术是微机械的关键技术之一,本文从微器件装配系统的特性和功能出发,提出了一套微装配系统设计方案,并对系统各个组成部分进行分析,介绍了系统实现的方法。  相似文献   

5.
提出了基于立体视觉的微装配系统中微器件三维坐标变换的方法.该方法的系统模型中综合考虑了CCD摄像系统、显微成像系统、工作台以及微夹持手等多坐标系统,并运用光学原理,建立了微装配系统中微器件成像关系.研究分析表明,这种方法是一种有效、简单、易行的方法.  相似文献   

6.
针对微颗粒空间装配的问题,以外径为十几微米的微颗粒与外径为几百微米的柱腔装配为研究对象,开展微颗粒空间跨尺度装配方法研究。首先,针对微颗粒受到基底表面作用力影响不易被拾取与释放的问题,分析了微颗粒的受力情况,设计了真空吸附式微夹持器用于微颗粒的拾取与释放;然后,针对由于微颗粒与柱腔的尺寸跨度大,很难实现装配过程中二者空间位置实时监测的问题,设计了具有多维视觉监测功能的微装配机器人并且建立了多维视觉监测模型,实现微颗粒与柱腔装配过程的在线监测;最后,提出了基于多维视觉监测模型的微颗粒与柱腔空间半自动装配方法。实验结果证明了所提方法的有效性,并且实现了将外径为20μm的微颗粒放入外径为200μm的柱腔内的目标。该方法适用于微机电系统制造中微颗粒的三维空间装配。  相似文献   

7.
首先概述了国内外微装配系统的研究现状,在分析微装配系统的特点和功能需求基础上,提出一种基于计算机视觉伺服控制的微装配系统设计方案,详细描述了系统中精密三维微定位工作台、SMA微夹持作业工具以及视觉伺服控制系统等关键技术的解决方案,并以直径为几百微米级的典型微轴孔的装配为目标开展各项关键技术的试验研究.  相似文献   

8.
基于机器视觉的微小特征定位是精密自动化装配的关键环节,外界干扰和零件本身差异等容易引起视觉引导错误,影响装配成功率,因此提出一种由粗定位与精定位两步组成的复合定位方法。首先通过基于卷积神经网络的目标框检测算法提取感兴趣区域实现粗定位,在此基础上通过轮廓几何特征配准的方式实现零件精定位,算法中还采用自动标注辅助的动态学习机制解决不同批次零件间差异导致定位失败率较高的问题。在自研的装配设备上对该方法进行测试,分析了亮度、离焦和位姿变化对视觉定位算法鲁棒性的影响,并进行了定位精度及小批量装配实验测试。结果表明:本文方法在多种干扰下的装配成功率达到97%,视觉定位的绝对精度与重复精度均优于2μm,装配精度优于10μm,能够满足精密微装配对定位算法精度与稳定性的要求。  相似文献   

9.
面向光学精密装配的微操作机器人   总被引:4,自引:0,他引:4  
为完成复杂的光学精密装配任务,开发一种多传感器混合控制的宏/微结合微操作机器人系统.在分析光学装配原理的基础上,阐述机器人系统的组成.研制由交流伺服电动机驱动的6自由度并联机构和由压电陶瓷驱动的5自由度柔性铰链机构,分别实现光学器件的粗定位及精定位,由压电陶瓷驱动的二级杠杆放大机构实现光学器件的可靠夹持.建立包括位姿检测、显微视觉、激光损耗检测及力检测的多传感器控制系统,根据传感器采集的位姿信息、视觉信息、损耗信息及力信息协调控制宏/微定位工作台精确调整光学器件的位置和姿态,实现装配自动化.试验表明,开发的面向光学精密装配的微操作机器人能够成功地完成光学器件的精确装配.  相似文献   

10.
基于微小型移动机器人的微操作系统   总被引:3,自引:0,他引:3  
提出一种新颖的基于宏/微双重驱动微小型移动机器人的微操作系统.机器人在宏运动状态下为典型的轮式机器人,在微运动状态下为尺蠖运动机器人.将集成微夹持器的微操作器安装在机器人移动定位平台上用于实现微操作任务.为了自动导航机器人完成微操作任务,设计外部智能视觉系统.视觉系统分为全局视觉与显微视觉两个子部分,机器人在全局视觉的导航控制下以宏运动状态实现大范围的粗定位,并使机器人微夹持器末端准确地进入显微镜视场.在显微视觉的导航控制下以微运动状态实现小范围、高精度的精定位,并完成微操作任务.试验表明,提出的基于微小型移动机器人的微操作系统能够成功地实现微小零件的夹取与装配.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号