首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Residual stress has a sustained impact on the deformation of thin-walled parts after processing, raising the strict restrictions required in their using procedure. In general, with regard to thin-walled parts, different processing parameters will affect the distortion and residual stress generation of the workpiece, which play the key role in the machining. However, controlling the material removal rate is also quite critical to machining of thin-walled parts. In order to reach these goals, based on the relation between residual stress and uncut chip thickness (UCT), a method is proposed by optimizing the milling tool diameters. The research finding reveals that, by improving the tool diameter, at the same circular position, smaller UCT can be achieved. In addition, take 6 and 12 mm tool diameter as analysis cases; larger tool diameter can reduce the residual tensile stress distribution significantly (the ratio ranges from 13.9 to 34.7 %) and improve the material removal rate. Moreover, a typical thin-walled part is evaluated using different tool diameters (6 and 12 mm) by experiments, as the final distortion can be decreased by 60 % with 12-mm tool diameter. The distribution of machined surface and subsurface residual stress is turning to be more uniform. Hence, it proves that, under the goals of maintaining machining accuracy and material removal rate, also improving the distribution of residual stress, it is possible to achieve by controlling the UCT (tool diameters) in the processing of thin-walled. All these findings can help to enhance the milling precision of thin-walled parts, as well as control and optimize the residual stress distribution.  相似文献   

2.
高强度钢具有优异的机械性能和广阔的应用,但切削加工较为困难,存在加工效率低,加工表面质量差等问题。以AF1410高强度钢为研究对象,应用高速铣削的加工方法,使用涂层硬质合金刀片,对AF1410高强度钢进行了高速铣削实验,研究分析了在高速切削条件下刀具磨损、切削力、切削温度以及已加工表面粗糙度的变化规律。研究发现以TiCN和Al2O3组合的CVD涂层刀具可以适应AF1410高强度钢的长时间高速稳定切削,刀具磨损形态主要为后刀面的正常磨损;切削过程中径向力Fr最大、轴向力Fz次之、切向力Ft最小,随着切削长度的增加,径向力Fr与轴向力Fz的增幅较大,切向力Ft变化较小;切削长度增加,刀具刚切出的切屑温度逐渐上升,而工件已加工表面温度的增幅较小;已加工表面粗糙度随切削长度增加波动较小。  相似文献   

3.
蔺伟兴  张俊  赵琦  赵万华 《工具技术》2014,48(12):17-20
汽轮机叶片的表面质量是影响汽轮机动力学性能和工作效率的一个主要因素。本文以制造汽轮机某级叶片的材料N87为研究对象,通过多因素工艺实验,分析了铣削时切削液的浇注压力和浇注方向对材料表面质量的影响。验结果表明切削液喷射压力升高降低了工件表面进给方向的残余拉应力,提高了垂直于进给方向的压应力。工件的表面粗糙度也大大降低,同时已加工表面的撕裂和犁沟也减小,表面形貌得到改善。相比切出方向而言,从切入方向喷入切削液可以更好起到提高材料表面质量的作用。本文研究结论将对合理利用切削液和提高材料表面质量有一定的指导意义。  相似文献   

4.
SiC_p/Al复合材料属于典型难加工材料,大量Si C颗粒离散分布其中,导致在铣削加工高体积分数SiC_p/Al复合材料时,加工表面容易出现应力分布不均现象,严重影响材料的稳定性。为了研究SiC_p/Al复合材料加工表面残余应力,通过ABAQUS有限元分析软件建立了SiC_p/Al复合材料三维铣削有限元模型,并分析了切削工艺参数对残余应力的影响。结果表明:切削速度对残余应力变化影响较小,每齿进给量对残余应力变化影响较大,所得结果与经验计算值吻合较好。  相似文献   

5.
This paper focused on high-speed milling of Al6063 matrix composites reinforced with high-volume fraction of small-sized SiC particulates and provided systematic experimental study about cutting forces, thin-walled part deformation, surface integrity, and tool wear during high-speed end milling of 65% volume fraction SiCp/Al6063 (Al6063/SiCp/65p) composites in polycrystalline diamond (PCD) tooling. The machined surface morphologies reveal that the cutting mechanism of SiC particulates plays an important role in defect formation mechanisms on the machined surface. In high-speed end milling of Al6063/SiCp/65p composites, the cutting forces are influenced most considerably by axial depth of cut, and thus the axial depth of cut plays a dominant role in the thin-walled parts deformation. Increased milling speed within a certain range contributes to reducing surface roughness. The surface and sub-surface machined using high-speed milling suffered from less damage compared to low-speed milling. The milling speed influence on surface residual stress is associated with milling-induced heat and deformation. Micro-chipping, abrasive wear, graphitization, grain breaking off, and built-up edge are the dominated wear mechanism of PCD tools. Finally, a series of comparative experiments were performed to study the influence of tool nose radius, average diamond grain size, and machining parameters on PCD tool life.  相似文献   

6.
Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6Al4 V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6Al4 V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6Al4 V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.  相似文献   

7.
Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6Al4V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6Al4V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6Al4V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.  相似文献   

8.
Residual stresses are usually imposed on a machined component due to thermal and mechanical loading. Tensile residual stresses are detrimental as it could shorten the fatigue life of the component; meanwhile, compressive residual stresses are beneficial as it could prolong the fatigue life. Thermal and mechanical loading significantly affect the behavior of residual stress. Therefore, this research focused on the effects of lubricant and milling mode during end milling of S50C medium carbon steel. Numerical factors, namely, spindle speed, feed rate and depth of cut and categorical factors, namely, lubrication and milling mode is optimized using D-optimal experimentation. Mathematical model is developed for the prediction of residual stress, cutting force and surface roughness based on response surface methodology (RSM). Results show that minimum residual stress and cutting force can be achieved during up milling, by adopting the MQL-SiO2 nanolubrication system. Meanwhile, during down milling minimum residual stress and cutting force can be achieved with flood cutting. Moreover, minimum surface roughness can be attained during flood cutting in both up and down milling. The response surface plots indicate that the effect of spindle speed and feed rate is less significant at low depth of cut but this effect significantly increases the residual stress, cutting force and surface roughness as the depth of cut increases.  相似文献   

9.
利用有限元法对镍基高温合金Inconel 718的高速正交铣削进行模拟仿真,获得切削力、切削温度和残余应力.结果表明在仿真切削速度100-3000m/min范围内,刀尖峰值温度随切削速度提高而增大,由于高温造成工件软化,从而使切削力随切削速度增大而减小;残余应力层深度在已加工表面O.5mm以下,最大表面残余应力为拉应力...  相似文献   

10.
高速铣削铝合金时切削力和表面质量影响因素的试验研究   总被引:18,自引:3,他引:18  
李亮  何宁  何磊  王珉 《工具技术》2002,36(12):16-19
对高速铣削典型铝合金框架结构工件时的切削力和加工表面质量进行了试验研究。在高速进给铣削时 ,当进给方向发生改变 ,机床的加减速特性将导致在拐角处进给量减小、铣刀切入角增大 ,从而引起切削力增大和加工振动。在恒切削效率条件下高速铣削铝合金的试验结果表明 ,高速铣削时宜采用较小的轴向切深和较大的径向切深 ,以减小铣削力、提高加工表面质量 ;刀具动平衡偏心量是高速铣削时引起轴向振纹的主要原因  相似文献   

11.
Disc milling strategy has been applied in grooving for decades for its capacity to provide huge milling force on the difficult-to-cut material. The processing efficiency of machined components thus can be tremendously improved with the application of disc milling. However, the fundamental research of the mechanisms of disc milling on cutting metal materials, especially on titanium alloys, is lacking in the literature. In this study, the milling force and temperature were inspected in disc milling grooving experiment, and the effect of thermal-mechanical coupling on surface integrity of titanium alloy, including surface roughness, surface topography, surface and subsurface residual stress, microstructure, and microhardness, was analyzed. The results showed that a better surface quality can be obtained at the center of the surfaces compared to the marginal regions on the same machined surface. Residual compressive stress was generated on the machined surface and subsurface and gradually reduced to zero with an increase in depth. The microstructure of lattice tensile deformation was emerged along feed direction, while the phase transition was not produced. A hardened layer was found on the machined surface and subsurface, mostly causing by the mechanical loads and oxidation reaction.  相似文献   

12.
采用AlTiN涂层4刃?10 mm硬质合金立铣刀,在VMC850立式加工中心上对TC4钛合金进行铣削精加工试验。利用高精密数字化检测设备,对加工成形的TC4钛合金试件表面粗糙度、平面度、平行度、表面形貌、残余应力及显微硬度测量。分析AlTiN涂层刀具在设定不同工艺参数条件下TC4钛合金的整体加工质量和表面形貌变化规律。结果表明:在主轴转速n=8000 r/min、每齿进给量f z=0.04 mm/z、切削深度Δd=0.5 mm的最优精铣工艺参数下,TC4钛合金工件的加工质量和表面形貌好,刀具寿命长,其平面度为0.39μm,平行度为0.33μm,表面粗糙度为0.70μm,表面残余应力为-175 MPa,表面显微硬度为269 HV 0.2,实现了TC4钛合金的高质量高效率的精铣加工。  相似文献   

13.
小径向切深下进给量对铣削稳定性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了小径向切深下高速铣削系统动力学模型。该模型考虑了再生效应、刀具-工件接触分离效应和进给量等因素的影响。针对建立的周期时滞微分方程,运用周期系统的线性化理论和半离散估计技术,将无限维特征值稳定性判定问题转化为有限维Floquet变换矩阵特征乘子稳定性判定问题,判定系统的稳定性,获得系统的稳定性极限图。研究结果显示,在小径向切深情况下,由于进给量的影响,铣削系统稳定性有显著的下降趋势,但不同进给量对系统稳定性的影响不大。  相似文献   

14.
以螺旋铣孔工艺时域解析切削力建模、时域与频域切削过程动力学建模、切削颤振及切削稳定性建模为基础,研究了螺旋铣孔的切削参数工艺规划模型和方法。切削力模型同时考虑了刀具周向进给和轴向进给,沿刀具螺旋进给方向综合了侧刃和底刃的瞬时受力特性;动力学模型中同时包含了主轴自转和螺旋进给两种周期对系统动力学特性的影响,并分别建立了轴向切削稳定域和径向切削稳定域的预测模型,求解了相关工艺条件下的切削稳定域叶瓣图。在切削力和动力学模型基础之上,研究了包括轴向切削深度、径向切削深度、主轴转速、周向进给率、轴向进给率等切削工艺参数的多目标工艺参数规划方法。最后通过试验对所规划的工艺参数进行了验证,试验过程中未出现颤振现象,表面粗糙度、圆度、圆柱度可以达到镗孔工艺的加工精度。  相似文献   

15.
The turning process is a standard machining process employed in diverse sectors. However, it produces long continuous chips that can affect the efficiency of the process, accelerate the tooling's wear, or damage the machined surface. As a solution, low frequency vibration cutting synchronizing with the spindle rotation has recently been developed as a new machining method in turning operation. It applies vibrations in the tool feed direction and can synchronously control the applied vibrations and the spindle rotation. It can also effectively divide the long continuous chips generated by the turning process and has the potential to reduce thermo-mechanical load on the tool by periodically enabling the tool to leave the workpiece due to the vibrations. Low frequency vibration cutting, the cutting characteristics of which differ from those of conventional turning, induces residual stresses in the machined surface; however, the properties of these stresses have not yet been studied. Residual stress can have both beneficial and negative effects on the fatigue life of products. While compressive residual stress increases the fatigue life of the product, tensile residual stress facilitates the growth of fine cracks on the product's surface and reduces fatigue life. Therefore, it is important to understand the characteristics of the residual stress developed on a machined surface. In this study, an annealed 0.45% C steel bar was machined via straight turning of the vibration cutting process synchronizing with the spindle rotation, and the residual stress on the finished surface was measured. Particular focus was placed on analyzing the effects of the spindle phase on the characteristics of the residual stress inside the machined surface, especially the effects of the number of vibrations per spindle rotation, D, which is a unique parameter defining the vibration condition. Our results revealed that the residual stress varied depending on the position of the finished surface owing to the change in feed with the spindle phase during the process. Furthermore, D was observed to heavily influence the distribution of the residual stress on the finished surface. By means of adjusting its value, the residual stress value could either fluctuate periodically according to the phase of the workpiece or not fluctuate.  相似文献   

16.
The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.  相似文献   

17.
高速铣削时钛合金刀具的磨损及对工件表面粗糙度的影响   总被引:1,自引:0,他引:1  
观察高速铣削钛合金刀具时后刀面及被加工表面的形貌,通过对刀具后刀面磨损量和被加工表面粗糙度值的测量研究了刀具磨损对被加工表面粗糙度的影响,揭示了钛合金铣削加工时提高表面质量的规律。  相似文献   

18.
Inconel 718 is a difficult-to-machine material while products of this material require good surface finish. Therefore, it is essential for the evaluation and prediction of surface roughness of machined Inconel 718 workpiece to be developed. An analytical model for the prediction of surface roughness under laser-assisted end milling of Inconel 718 is proposed based on kinematics of tool movement and elastic response of workpiece. The actual tool trajectory is first predicted with the consideration of overall tool movement, elastic deformation of tool, and the tool tip profile. The tool movements include the translation in feed direction and the rotation along its axis. The elastic deformation is calculated based on the previously established milling force prediction model. The tool tip profile is predicted based on the tool tip radius and angle. The machined surface profile is simulated based on the tool trajectory with elastic recovery, which is considered through the comparison between the minimum thickness and actual cutting thickness. Experiments are conducted in both conventional and laser-assisted milling under seven different sets of cutting parameters. Through the comparison between the analytical predictions and experimental measurements, the proposed model has high accuracy with the maximum error less than 27%, which is more accurate for lower feed rate with error less than 3%. The proposed analytical model is valuable for providing a fast, credible, and physics-based method for the prediction of surface roughness in milling process.  相似文献   

19.
An Operation Planning System for Multi-Axis Milling of Sculptured Surfaces   总被引:1,自引:1,他引:0  
Multi-axis milling of sculptured surfaces with cylindrical or toroidal cutters has many advantages compared to the use of three-axis milling with ball nose cutters. Surfaces to be machined are often of complex shape and characterised by convex, concave and saddle areas. Today, CAM-systems do not support the user in the selection of the different operations in order to finish the workpiece. This paper describes an operation planning system, which facilitates process planning for the multi-axis machining of sculptured surfaces. The core of the system is surface analysis, which divides the surfaces into regions, each characterised by a preferred milling direction and tool diameter. Further, for each region or set of regions, a drive surface is constructed that is used as the basis for the tool-path calculation. The drive surface approximates to the original workpiece as closely as possible, and the isoparametric lines which will be the tool-path feed direction lie in the preferred milling direction.  相似文献   

20.
The Ti6Al4V parts produced by the existing selective laser melting (SLM) are mainly confronted with poor surface finish and inevitable interior defects,which substantially deteriorates the mechanical properties and performances of the parts.In this regard,ultrasonically-assisted machining (UAM) technique is commonly introduced to improve the machining quality due to its merits in increasing tool life and reducing cutting force.However,most of the previous studies focus on the performance of UAM with ultrasonic vibrations applied in the tangential and feed directions,whereas few of them on the impact of ultrasonic vibration along the vertical direction.In this study,the effects of feed rate on surface integrity in ultrasonically-assisted vertical milling (UAVM) of the Ti6Al4V alloy manufactured by SLM were systemically investigated compared with the conventional machining (CM) method.The results revealed that the milling forces in UAVM showed a lower amplitude than that in CM due to the intermittent cutting style.The surface roughness values of the parts produced by UAVM were generally greater than that by CM owing to the extra sinusoidal vibration textures induced by the milling cutter.Moreover,the extra vertical ultrasonic vibration in UAVM was beneficial to suppressing machining chatter.As feed rate increased,surface microhardness and thickness of the plastic deformation zone in CM raised due to more intensive plastic deformation,while these two material properties in UAVM were reduced owing to the mitigated impact effect by the high-frequency vibration of the milling cutter.Therefore,the improved surface microhardness and reduced thickness of the subsurface deformation layer in UAVM were ascribed to the vertical high-frequency impact of the milling cutter in UAVM In general,the results of this study provided an in-depth understanding in UAVM of Ti6Al4V parts manufactured by SLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号