首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
A laser sensor with multiple detectors for freeform surface digitization   总被引:1,自引:0,他引:1  
An integrated laser scanning sensor for freeform surface digitization is presented. The sensor consists of a diode laser light source and four position-sensitive device (PSD) detectors. The stand-off distance of the sensor is 180 mm and the measurable range is 90 mm. The Lambert model is applied to calculate the displacement between the sensor and the measured point on the object surface along the optical axis, under the assumption of a diffusive surface. The inclination angle of the measured point from the vertical plane of the laser beam is calculated by mathematical inference. Those data are used in error compensation to improve system precision. The new design of multiple detectors could increase the measurable angle and could solve the dead space problem in single point laser of triangulation measurement. The computer simulation and actual measurements show that the displacement resolution reaches 50 μm, and the system performs well in regards to stability and repeatability. The sensor system could be mounted on the NC machine orX-Y platform for freeform surface digitization.  相似文献   

2.
This paper describes the development of a non-contact type system for measuring a freeform surface on a machine tool. A laser probe, model OTM-3A20 made by Wolf & Back Co., was integrated into a CNC machining centre as a non-contact sensor. An adjustment device for the laser probe was designed to minimise the cosine error caused by assembly inaccuracy. An alignment test of the measuring laser beam was carried out using a calibrated specimen. The systematic accuracy of the circular triangulation laser probe and a standard triangulation laser probe, with respect to the surface roughness, surface slope, and coating colour of the workpiece, was investigated by using an HP5529A laser interferometer system. The measuring system, which consists of a personal computer, a CNC controller of a machining centre, a Renishaw MP10 touch-trigger probe system, and the controller of the laser probe system, was integrated information-technically. Automatic measuring software was developed for the purpose of measuring path simulation, generation of NC codes, and error analysis of the measured data. The profile error of the tested object, measured by the laser probe and the coordinate measuring machine respectively was found to be within 45 μm. In this case, the tolerance of the designed part is about 50 μm, so the developed system can be applied to the inspection of mould production in bakelite according to the experimental results. ID="A1"Correspondance and offprint requests to: Dr Fang-Jung Shiou, Department of Mechanical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd. 106 Taipei, Taiwan. E-mail: shiou@mail.ntust.edu.tw  相似文献   

3.
李兵  孙彬  陈磊  魏翔 《光学精密工程》2015,23(7):1939-1947
以点激光位移传感器(HL-C211BE)为对象,研究它在自由曲面测量中的应用。针对激光位移传感器因测点倾角代入的测量误差,提出了一个可以量化的倾角误差模型。基于直射式点激光三角法原理,分析了激光光路的几何关系,从会聚光斑光能质心发生的偏移推导出倾角误差模型。随后,用高精度激光干涉仪和正弦规对激光位移传感器进行校对实验,并用误差模型对测量结果进行补偿。结果显示,补偿后激光位移传感器的测量精度得到明显提高。对一非球面凸透镜进行了实验测量,得到了自由曲面测点倾角的计算方法,并用倾角误差模型修正了测量数据。实验结果表明,量化的倾角误差模型可以将激光位移传感器的测量误差控制到小于10μm,满足激光位移传感器在自由曲面测量中应用的要求。  相似文献   

4.
点激光测头激光束方向标定   总被引:5,自引:0,他引:5  
为了使点激光测头能在任意方向上实现测量功能,提出一种逆向工程中标定激光束方向的方法,设计了一种标定面方向可调的标定块配合标定。标定过程中,让激光测头在标定面上分别沿X、Y、Z3个轴方向做等间距运动,根据进给步长与激光束长度变化量之间的关系确定激光束的方向。以三坐标测量机为平台,给出了以任意方向安置点激光测头时,测量值从传感器坐标系到基准坐标系的转换过程,并对标定算法及整个标定过程进行了详细描述。最后,通过与接触式测量进行对比实验,验证标定后点激光测头的测量效果。实验结果表明,用该方法标定的点激光测头在3σ范围内沿任意方向的测量误差为(0.0452±0.0168)mm,满足逆向工程的测量要求。  相似文献   

5.
非接触式缸盖平面度误差检测方法与测量系统研究*   总被引:1,自引:0,他引:1  
为解决发动机缸盖生产铸造过程中缸盖底面平整度误差检测问题,设计一种激光非接触式发动机缸盖底面平整度在线检测系统,提出一种基于对角中线的平面度误差检测算法。根据现场平面度检测需求,设计利用激光臂纵轴和缸盖横轴传送的交互运动的发动机缸盖表面平面度误差检测系统;通过发动机缸盖表面检测四个顶角特征点对角线中线建立发动机缸盖平面度检测的数学模型,利用回归方程确定最小二乘法平面为理想平面,求出平面度误差;并对激光位移传感器进行精度标定,给出传感器误差标定回归方程,并应用该检测系统完成对不同型号的发动机缸盖检测。结果表明:该系统最大检测面积为400 mm×2 000 mm,测量范围为160~450 mm,测量精度为0.03 mm,而且结构简单,检测速度快,完全能够达到在线检测要求。  相似文献   

6.
This study develops a novel optical non-contact probe that measures the position and orientation (normal vector) of a freeform surface. The probe system comprises a five-laser-beam projector and a charge-coupled device (CCD) camera. The probe is integrated on a three-axis platform. Five designed laser beams project onto a measuring surface, where five light spots are observed. The CCD captures the image of this surface and processes it. The 3D coordinates of the five light spots can be then computed. The normal direction at the central spot on the measuring surface is determined from two crossed curves through the coordinates of these five light spots. Two crossed curves are constructed using the Bezier method. The normal vector is the cross-product of two tangent vectors to the two crossed curves at central spot. A scheme for calibrating and making measurements using this five-laser-beam probe is proposed and verified experimentally. Experimental results demonstrate that this five-laser-beam probe system can measure the position and orientation of a freeform surface. The range of depths that can be measured using this probe is 2.4 mm and the range of angles is 40°. The positional measuring accuracy of the complete system is approximately 30 μm while the orientational accuracy is 1.8°.  相似文献   

7.
This paper describes the measurement of straightness error motions (vertical straightness and horizontal straightness) and rotational error motions (pitch, yaw and roll) of a commercial precision linear air-bearing stage actuated by a linear motor. Each of the error motions was measured by two different methods for assurance of reliability. The stage was placed in the XY-plane and moved along the X-direction. The pitch error and yaw error, which were measured by an autocollimator and the angle measurement kit of a laser interferometer, were about 8.7 and 1.6 arc-s, respectively, over a travel of 150 mm with a moving speed of 10 mm/s. The roll error was measured by the autocollimator through scanning a flat mirror along the X-direction. The second method for roll error measurement was to scan two capacitance-type displacement probes along the flat surface placed in the XZ-plane. The two probes with their sensing axes in the Y-direction were aligned with a certain spacing along the Z-axis. The roll error can be obtained by dividing the difference of the outputs of the two probes by the spacing between the two probes. The roll error was measured to be approximately 11.8 arc-s over the 150 mm travel. The horizontal straightness error and the vertical straightness error (Y- and Z-straightness errors) were measured by using the straightness measurement kit of the laser interferometer. The second method for straightness measurement was to scan the flat surface with a capacitance-type displacement probe. The horizontal and vertical straightness errors of the stage over the 150 mm travel were measured to be approximately 207 and 660 nm, respectively.  相似文献   

8.
This study investigates the possibilities of automated spherical grinding and ball burnishing surface finishing processes in a freeform surface plastic injection mold steel PDS5 on a CNC machining center. The design and manufacture of a grinding tool holder has been accomplished in this study. The optimal surface grinding parameters were determined using Taguchi’s orthogonal array method for plastic injection molding steel PDS5 on a machining center. The optimal surface grinding parameters for the plastic injection mold steel PDS5 were the combination of an abrasive material of PA Al2O3, a grinding speed of 18000 rpm, a grinding depth of 20 μm, and a feed of 50 mm/min. The surface roughness Ra of the specimen can be improved from about 1.60 μm to 0.35 μm by using the optimal parameters for surface grinding. Surface roughness Ra can be further improved from about 0.343 μm to 0.06 μm by using the ball burnishing process with the optimal burnishing parameters. Applying the optimal surface grinding and burnishing parameters sequentially to a fine-milled freeform surface mold insert, the surface roughness Ra of freeform surface region on the tested part can be improved from about 2.15 μm to 0.07 μm.  相似文献   

9.
为满足飞机结构强度试验中舵面偏角测量的要求,提出了一种基于位移测量的舵面偏角测量方法。该方法通过安装于舵面悬挂支臂上的两个拉线式位移传感器,测量相对于舵面悬挂接头上同一个测量点的位移,利用三角公式进行计算,得到舵面的偏转角度。对比验证试验表明,该方法的测量性能指标满足飞机结构强度试验要求,解决了传统利用倾角传感器无法测量方向舵偏角的难题,提高了试验数据采集的效率。  相似文献   

10.
为解决时栅角位移传感器在实际应用中的在线标定问题,提出了一种定角平移自标定方法并设计了相应的自标定系统。该方法首先把圆周封闭的自然基准转换成定角基准,在时栅内部建立了自标定基准。然后,根据傅里叶级数的性质,将定角基准平移到傅里叶变换的幅值和相位中,建立了测量值之差与误差之差的函数关系。通过对测量值之差进行傅里叶分析,重构了时栅角位移传感器的误差函数。最后,讨论了影响自标定精度的误差来源,并设计了传感器的零点纠错算法。为了检验自标定效果,利用激光干涉仪实验装置与自标定系统进行了对比试验。结果表明:定角平移自标定精度为1.9″,与理论计算的自标定误差(1.5±0.5)″的结论相符。提出的自标定方法在解决时栅自身标定基准的同时,满足了精密测量领域对时栅精度和可靠性的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号