首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
基于光斑旋转的光纤温度传感器   总被引:1,自引:1,他引:0       下载免费PDF全文
王华  查媛  吴骏  马军山 《光学仪器》2014,36(4):311-314
设计了一种基于光斑旋转的新型光纤温度传感器,采用在一根光纤上绕制2个光纤环的方法,通过对一个光纤环直径的调节使其发生宏弯损耗,以获得合适出射光斑数;对另一个光纤环置于水温控制箱中,观察温度的变化与出射光斑发生旋转的关系。利用MATLAB对实验数据进行处理,获知光斑角度与控制箱温度存在很好的线性关系,同时实验分析了光纤环的直径、光纤环的紧绕圈数对传感器灵敏度的影响。  相似文献   

2.
基于输出光斑旋转的光纤微弯位移传感器   总被引:1,自引:1,他引:0  
吴骏  查媛  王华  马军山 《光学仪器》2016,38(2):117-120,127
为研究光纤微弯位移传感器,在单模光纤传输系统中设计了一个光纤圈和光纤微弯传感器。通过改变光纤圈的直径,以获得两个光斑,通过移动光纤微弯传感器,记录输出光斑旋转情况,并分析了传感器的移动位移和输出光斑的旋转角度之间的关系。实验表明,光斑转移角度与传感器位移在一定范围内存在良好的线性响应关系,因此可通过检测光斑图像的旋转来实现位移量的测量。  相似文献   

3.
为了实现位移传感器的多点监控,设计了5个光纤环组成的光纤传感器,通过减小其中1个光纤环的半径使光纤出射端获得双光斑,当其他4个的任意1个光纤环在外力的作用下产生形变时,会使出射双光斑发生旋转,通过记录和分析4个光纤环形变和输出双光斑的旋转角度之间的关系,获得周围环境人员流动情况。实验表明,光斑旋转角度与传感器位移在一定范围内存在良好的线性响应关系,该传感器可以有效地应用于实际的多点监控中。  相似文献   

4.
光纤传感器以其耐水、耐高温、抗电磁干扰等优势备受青睐,通过介绍基于光纤环输出光斑旋转的位移传感器的原理与实验现象,提出了一种基于质心计算的图像处理方法,该方法能更加精确地测量光斑旋转角度。该方法通过以旋转轴为中心,对每一个光斑分别跟踪求取质心坐标,得到每个光斑对应的角度,并计算角度旋转变化的值,从而得出该位移传感器随位移线性变化的关系。实验结果表明,该方法更加准确且有效。  相似文献   

5.
肖辽  顾杰  马军山 《光学仪器》2017,39(2):34-38
采用将传感光纤绕制在螺旋型调制器上的方法,设计了一种基于光斑旋转角度调制的新型光纤温度传感器。根据螺旋型调制器所处环境温度的变化会使传感光纤产生双折射效应,从而使出射光斑发生旋转变化的原理,通过CCD获得不同温度下的出射光斑图像的变化情况以及利用MATLAB对所得数据进行处理,可以探测出温度变化与出射光斑旋转角度的关系,达到对温度间接测量的目的。实验证明,光斑旋转角度与温度变化在一定范围内有很好的线性关系,而且该传感系统灵敏度也比较高。  相似文献   

6.
针对微操作/微装配系统中夹持力和装配力微小、不易感测,且微器件易变形、断裂等问题,设计一种基于宏弯损耗原理的光纤微力传感器,用于微力传感。建立了光纤微力传感器测量微小力的传感方程,仿真研究了微力传感器结构参数对传感性能的影响,并通过测试验证了理论模型的正确性。结果表明:基于宏弯损耗的光纤微力传感器可实现微小力的绝对测量,并且可以通过优化光纤微力传感器的结构参数,实现分辨率和测量范围的调整。文中研制的光纤微力传感器,分辨率可达6 mN。  相似文献   

7.
光纤宏弯损耗与温度传感的理论分析   总被引:5,自引:5,他引:0  
为了从理论上分析和推导光纤宏弯曲损耗与温度的关系,采用了一个平板波导近似的弯曲损耗模型,对单模光纤的宏弯曲损耗和弯曲半径、波长以及温度的关系进行了分析和仿真,得到了弯曲损耗随弯曲半径的减小而增大,波长的增大而增大,温度的升高而减小的结论。该结论对光纤弯曲损耗在温度传感器方面的应用研究起着重要的参考作用。  相似文献   

8.
叙述了一种用于倾斜角及温度同时测量的传感器。该传感器由光纤锥和光纤布拉格光栅构成,当传感器倾角发生改变时引起光纤锥的通光损耗改变,通过测量通光损耗的变化而测量倾角,通过测量光纤光栅的反射波长的变化而实现温度测量,此外光纤布拉格光栅还有提高倾角测量灵敏度的作用。  相似文献   

9.
研究了绞合式光纤形变传感器的结构特征、传感特性和工作机理,并和其他种类的传感器做了比较,证明了该类型传感器的优越性。运用光纤的微弯损耗理论计算了该传感器的拉伸长度与光功率损耗的关系,通过检测出射光功率可以推断待测物的物理量变化。利用其特点,文中设计了一种能对微小形变进行实时监测的传感器,通过实验观察了传感器的输出量随着微小形变出现了有规律的变化。实验证明该传感器成功地监测了微小形变的变化规律并且不受其他设备的干扰和影响。  相似文献   

10.
乳化液作为液压支架的传动介质,其浓度大小直接影响液压支架和支柱的工作寿命及成本,因此对乳化液浓度严格检测十分必要。基于光纤的宏弯损耗原理,提出一种光纤乳化液浓度检测仪的设计方案,分析了影响损耗的因素,另外对乳化液的折射率特性进行了测试实验,分析了乳化液浓度与其折射率之间的关系,介绍了检测仪的系统组成和软、硬件设计。这种光强调制型光纤传感器结构简单,具有灵敏度高、抗电磁干扰和耐腐蚀的特点,能够实现对乳化液浓度的在线检测。  相似文献   

11.
光纤微弯传感器是一种强度调制式光纤传感器,它是利用光纤的微弯损耗效应来测量压力、温度、加速度、应变、流量等环境参量的变化.应用模式耦合理论分析了光纤微弯传感的基本原理,设计了两种不同结构参数的光纤微弯传感器,并且研究了传感器在载荷力的微扰下的输出特性和影响传感器灵敏度的关键因素.实验研究表明,所设计的微弯型压力传感器在一定的压力范围内具有较高的灵敏度、较好的线性和重复性.  相似文献   

12.
针对挠性光互联中光纤存在弯曲损耗的问题,文中简要介绍了弯曲损耗产生的原理,采用全矢量有限元法对比研究了SMF-28 单模光纤和G657B光纤的弯曲损耗。研究结果表明,弯曲损耗随入射波长的增加而增加,随弯曲半径的增加而减小。2 种光纤的弯曲损耗相差较大,主要原因在于G657B在光纤结构上的差异,其包层上掺杂了下陷层,增大了芯层和包层之间的折射率的差,增强了光纤芯层的束光能力,降低了光纤的弯曲损耗。文中的研究对光纤在挠性光互联中的应用具有一定的指导意义。  相似文献   

13.
基于弓形梁增敏结构的FBG振动传感器研究   总被引:4,自引:1,他引:3  
利用光纤光栅(FBG)随弓形梁弯曲变形的敏感特性,通过设计特制的增敏结构,研制了一种基于弯曲特性的FBG振动传感器.根据ANSYS数值分析和实验结果表明,在加速度0~5g、工作频率0~40 Hz范围内,传感器加速度特性曲线呈现良好对应关系,灵敏度可达458.1 pm/g,精度约0.002 g.该传感器系统采用双光栅形式实现了温度补偿,且在所测加速度范围内显示出较好的灵敏度和重复性,频响误差小,能够满足航空结构振动监测与控制需求.  相似文献   

14.
介绍了一种基于 调制的新型光纤温度传感器,它是通过光刻腐蚀和镀敷金属材料的方法在光纤上直接形成的。对其测温原理进行了研究:刻纹光纤受轴向应变时,其中传输的光信号输出功率对轴向应变相当敏感,很容易测量出光信号输出功率减少,原因是由于刻纹段光纤受轴向应变时纤芯折射率及半径变化的结果,且刻纹段与未刻纹段将发生大小不同的应变。当外界环境温度发生变化时,由敷在刻纹光纤外表面上的金属敷层将随环境温度的变化而热胀冷缩,这样使光纤同时产生一个沿光纤轴方向的拉伸应变。从而导致光纤中输出光功率发生改变。实验结果表明:光纤温度传感器的性能是由其结构参数、金属敷层材料种类及其对称性所决定,具有较好的重复性和较高的温度响应灵敏度。  相似文献   

15.
介绍一种基于多层介质膜干涉滤光片的不同光谱反射比随温度变化的光纤温度传感器,系统采用两个不同波长的反射光功率的比值作为传顺的输出信号,以消除光源功率波动对测量结果的影响。实验结果表明,该测量方法是完全可行的。  相似文献   

16.
分布式光纤测温技术综述   总被引:4,自引:1,他引:3  
光纤传感器以其独特的优点得到了人们的普遍关注,尤其分布式光纤传感技术在土木工程等大范围测量领域成为研究热点。通过对目前分布式光纤测温技术的系统论述,提出了分布式光纤测温技术的两个研究方向:基于光纤后向散射的光时域及频域反射技术的分布式光纤测温和基于光复用技术的光纤光栅分布式测温。通过对分布式光纤测温技术两个方向的工作原理、特点及性能的理论分析及仿真实验,综合论述和分析了分布式光纤测温技术两个方向的优点和缺陷,以及在具体工程中的实际应用。  相似文献   

17.
为解决临近空间飞艇气囊形态实时监测问题,提出了基于温度自解耦多芯光纤传感器的气囊蒙皮三维形变重构方法。根据飞艇气囊三维形态特征,设计了多芯光纤传感器布局和布设方式。将多芯光纤传感结构与Frenet-Serret方程相结合,建立了具备温度自解耦功能的蒙皮三维形变重构算法。以飞艇气囊柔性复合蒙皮为试验对象,设计并集成建立了蒙皮三维形变多芯光纤重构试验系统。试验分析了温度变化环境下多芯光纤传感器三维形变重构精度以及不同弯曲度下蒙皮三维形变型面重构精度,验证了所提方法的有效性。研究结果表明:利用多芯光纤传感器和温度自解耦方法能够在大变温环境下准确重构气囊蒙皮形变,蒙皮三维型面重构误差平均值小于1.5%,所提方法在临近空间飞艇气囊形态实时监测领域具有应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号