首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对目前摩擦热流加载方式对列车轴盘制动温度场影响规律的研究不全面的问题,系统考察了不同制动工况条件下,旋转热流法和均布热流法这两种摩擦热流加载方式计算得到的制动盘温度场的变化规律及差异性。计算结果表明,在不同制动工况条件下,对于制动盘面上的温度最高点,旋转热流法与均布热流法计算得到的温度值及其变化特性的差异最大。同时,这种差异与闸片-制动盘接触面积、车辆制动初速度、制动减速度以及轮质量等工况条件密切相关。随着距离盘面深度的增加,这种差异迅速减小,在2 mm处可近似认为相同。此外,在连续多次制动条件下,某一次制动中旋转热流法与均布热流法计算结果的差异性与之前的制动无关,并据此提出一种制动盘最高温度值的快速算法。研究成果为列车轴盘制动温度场计算中摩擦热流加载方式的选择提供了理论依据。  相似文献   

2.
程铖  陈俐 《机械传动》2019,43(2):1-7
温度场计算是离合器设计与控制的重要依据,摩擦热模型是温度场计算准确性的关键。针对热流均布和压力均布两种主流的摩擦热流密度模型,将其分别引入离合器热分析的有限元模型,计算在持续滑摩的极端工况下温度场随时间和空间的变化过程,从温度分布云图、温度沿半径方向的变化、最高温度以及温度梯度等方面对两种模型的计算结果进行比较,给出了两种模型的适用范围。  相似文献   

3.
针对传统模拟车轮踏面制动摩擦热流边界的加载方式存在的不足,如均布热源法计算精度较低和移动热源法计算效率较低,提出基于间隙热流加载法的车轮踏面制动摩擦温升有限元计算方法。以重载列车紧急制动为研究对象,通过与以往的移动热源法和均布热源法进行对比,研究新方法的计算精度和计算效率。计算结果显示:在计算精度方面,新方法不仅可以达到移动热源法的计算精度,还能体现均布热源法无法模拟的因闸瓦和踏面的接触-脱离现象导致的车轮踏面温度时间历程曲线波动现象。在计算时间方面,新方法的计算效率与均布热源法的相当,但新方法的计算速度比移动热源法的快4.3倍。  相似文献   

4.
针对列车踏面制动,分别基于旋转热源法和均布热源法建立了温度场计算模型。在包含匀减速制动、停止、匀加速启动和匀速运行四个阶段的一个基本制动工况下,选取车轮踏面以及踏面以下1 mm和2 mm处三个节点作为分析对象,对比了旋转热源法和均布热源法计算得到的温度变化曲线。同时考察了不同闸瓦接触面积、不同制动功率以及连续五个基本制动工况条件下,旋转热源法和均布热源法计算得到的上述三个节点温度变化曲线的变化规律及差异性。计算结果表明,对于踏面上的节点,旋转热源法与均布热源法计算得到的温度值及其变化特性存在很大的差异,但随着距离踏面深度的增加,两种计算方法得到的温度值差异迅速减小,在2 mm处可近似认为相同。此外在连续制动条件下,某一次制动中旋转热源法与均布热源法计算结果的差异性与之前的制动无关。  相似文献   

5.
建立多片离合器摩擦元件接合传热过程的有限元计算模型,使用耦合计算方法研究了摩擦元件在单次等初速接合与等时间接合过程中的热流分配系数及温度变化过程,并对温度进行无量纲化处理和对比。结果表明,在两种接合过程中,热流分配系数都会高于定速滑摩工况,且在最后阶段都会迅速上升并接近于1;等初速接合过程的油压会影响接触面的最高温度,存在一个临界接合油压,使接触面峰值温度比其他接合油压情况都低,有利于摩擦元件的热稳定;在不同初始速度下的等时间接合过程中,改变接合油压会影响接合过程,但并不改变热流分配系数和无量纲温度的变化过程,这便于快速计算接合过程摩擦元件的温度水平。  相似文献   

6.
为了准确获得限滑离合器长时间滑摩过程的温度场分布规律,利用Fluent软件求解了摩擦副不同工况下流场速度分布以获取平均对流换热系数,计算了润滑油冷却功率;通过热平衡法建立以摩擦接触表面温度连续为约束的动态热流分配温度预测模型,并设计了长时间滑摩试验。验证分析结果表明,定热流输入条件下,对偶钢片与摩擦片间存在温差且随时间增大,温度预测结果均高于试验值,最大偏差22.2 K;动态热流分配温度预测偏差在8.1 K之内;对偶钢片表面各位置处输入热功率随时间下降并趋于定值,平衡温度沿径向呈抛物线分布,在中、外径处达到峰值。  相似文献   

7.
《机械传动》2016,(10):5-10
在湿式多片离合器滑摩过程中,摩擦元件之间的热流分配会受到厚度和摩擦材料特性的影响。针对有限厚摩擦元件,建立厚度方向上的有限元耦合传热模型,计算摩擦元件之间热流分配系数的变化过程,同时得到摩擦元件温度场。分析结果表明,热流分配系数会从初始值经过短时间上升,变化到另一个稳态值;将该热流分配规律与使用半无限厚模型所得的定热流分配系数对比,发现后者只能用于确定初始热流分配系数;进行离合器滑摩实验发现:使用变热流分配系数计算的钢片中平面温度上升过程非常接近实验结果,但使用固定热流分配系数则会高估实际的钢片中平面温度,而低估摩擦片温度。  相似文献   

8.
以7075-T6铝合金为待焊材料,基于库伦摩擦定律建立摩擦塞焊的产热模型,利用ABAQUS软件模拟7075-T6铝合金的摩擦塞焊过程,建立焊接区域温度场的有限元模型,采用热流密度为定值和基于试验数据的热流密度的两种热源加载方式模拟摩擦塞焊焊接区域的温度场,并进行了试验验证。结果表明:两种热源加载方式下焊接区域温度场的变化趋势是一致的,但是相同时刻下,采用热流密度为定值的热源加载方式得到的铝板温度较高;采用两种热源加载方式得到焊接铝板测温点的温度变化趋势均和试验结果的相吻合,但采用基于试验数据的热流密度得到的模拟结果更准确,因此通过有限元产热模型来模拟7075-T6铝合金摩擦塞焊接区域的温度场是可行的。  相似文献   

9.
温度对湿式离合器摩擦副的性能和寿命具有重要影响。针对某款变速箱湿式离合器的工作接合过程,以一档离合器为例,结合热分析和有限元理论分析,对摩擦生热过程中的热传导和热流密度进行分析,确定热传导边界条件和初始条件,并建立湿式摩擦副的温度分布函数,获得不同结合次数温度分布。基于ANSYS瞬态热分析模块,根据摩擦生热原理,建立摩擦副分析模型,获得工作过程中温度分布规律;对不同时间情况下,主、从片的温度分布进行分析;对比分析不同的油槽花纹与从动片尺寸对温度场的影响。对比分析结果可知:油槽花纹与其尺寸的选择对温度场分布影响较大;双圆弧形油槽综合最优;模型分析和理论分析结果的一致性验证分析方法的正确性;通过改变摩擦副材料物理属性、结构尺寸和加载条件来分析其他工况情况,进而得出不同条件下摩擦副温度分布的情况。  相似文献   

10.
为深入研究湿式离合器接合过程温度场和应力场分布规律,针对摩擦副与润滑油对流换热,充分考虑其温度场、变形场和流场之间的相互作用,基于能量守恒定律和摩擦副动态接合过程工作机理,建立摩擦副热流固耦合数学模型,运用Abaqus与STAR-CCM+协同仿真,建立湿式离合器摩擦副三维热流固耦合有限元模型,并将该模型仿真结果与热机耦合仿真结果对比分析.结果表明:所建立的热流固耦合模型使摩擦副接触面温度和应力显著降低,径向温度梯度和应力梯度减小,流体-固体耦合表面温度场分布与摩擦副类似,流体出口温度上升.  相似文献   

11.
获得铣刀切削态下的三维温度场是进行热管铣刀散热基本结构优化设计的前提条件,然而目前还没有技术可以直接测量到刀体的三维温度场。对此首先建立切削态下铣刀三维非稳态温度场数值仿真模型,基于计算机仿真得到不同加载热流密度下铣刀仿真模型上点i1的时间—温度曲线,通过实验模拟切削态下在铣刀上加载热流,得到不同加载热流密度下铣刀体上对应仿真模型点i1的实体测温点i的时间—温度曲线,把两种方式获得的温度—曲线进行拟合,发现输入载荷一致时,两曲线的拟合度最好。进行切削测温实验,把点i的温度曲线与仿真模型点i1的温度曲线拟合,拟合度最高的仿真温度—曲线对应的加载热流密度为该切削工艺条件的加载热流密度。把切削实验的边界条件、初始条件和基于拟合方式获得的加载热流密度输入仿真模型,最后获得该切削工艺条件下铣刀的三维仿真温度场。  相似文献   

12.
制动器工作过程中盘片摩擦产生的热流为非轴对称的,二者之间的热流耦合及其他场的耦合作用是影响制动效能的重要因素。基于以上问题,针对盘式制动器建立热传导方程,对盘片之间的摩擦传热和热流耦合现象进行分析。根据盘式制动器的结构特点和所建立的热传导数学模型,基于ABAQUS/Explict搭建其三维瞬态温度/应力场有限元模型,分析正常制动和紧急制动等典型工况下制动盘的温度场和应力场,对多场耦合现象进行分析;分析制动盘打孔后的温度场、热应力场等分布。结果表明:车辆在正常制动和紧急制动时,多场耦合有较大区别;正常制动工况最高温升160℃,紧急制动最高温升622℃;紧急制动工况,场耦合情况严重,温度场在轴向和径向上存在较大的温度梯度,对制动效能有较大影响;打孔不适用所研究的制动器,对场分布产生不利影响,会降低制动效能。所搭建模型和分析结果为实际设计提供参考。  相似文献   

13.
随着列车运行速度的提高,动能急剧增加,制动时产生的热能也大大增加,巨大的制动热负荷使制动盘产生很大的温度梯度,紧急制动时的制动盘温度状况与其使用寿命密切相关,而如何准确预测制动盘摩擦表面的温度及温度场分布成为研究制动盘寿命的关键技术。研究中建立制动盘的三维模型,采用热弹塑性有限元法,利用能量折算模型、摩擦功率法计算温度场载荷,仿真不同制动工况下制动盘摩擦热负荷产生的温度场。通过仿真分析发现,不同工况下制动盘面的温度变化有着相似的规律。制动开始阶段,随着强热流的不断输入,盘面在很短时间内迅速升温,很快达到峰值点,"摩擦功率"模型的最大瞬时温度普遍高于"能量折算"模型,制动盘最大瞬时温度区域皆位于散热孔的中间靠上部的微小局部区域,并且不是均匀分布。  相似文献   

14.
大厚度铝合金板搅拌摩擦焊工程应用时常用双轴肩焊接工具焊接,而双轴肩焊接工具使用寿命较短、易磨损,铝合金厚板单轴肩搅拌摩擦焊在工程实践中具有重要意义。针对5A06铝合金厚板的单轴肩搅拌摩擦焊过程进行了热流有限元分析,建立了大厚度铝合金板热流仿真模型,分析了5A06铝合金焊接时温度场分布特征、焊接热循环曲线特征,焊接前进侧/后退侧热循环曲线及外加热源、冷源对搅拌摩擦焊温度场的影响。结果表明,单轴肩搅拌焊工具插入工件预热初期,轴肩产热占整个搅拌工具产热70%以上,前进侧和后退侧最高温度相差约40℃,同时施加热源和冷源时能够很好地限制板材底部热量的散失以及轴肩附近温度的快速升高,有利于焊缝质量的提升。  相似文献   

15.
新型负载模拟器利用摩擦加载原理实现对舵机的力矩加载。利用摩擦磨损理论,提出修正的摩擦力矩计算公式,对圆环式、圆盘式、扇形式摩擦副的摩擦力矩进行计算与讨论,初步证明了修正模型的合理性;基于热力学理论,采用有限元软件(ABAQUS)分析摩擦盘瞬态温度场,结果表明,压力、转速的升高都会使摩擦盘温度迅速升高,同时造成高温区更加集中;相比压力而言温度场对转速变化更加敏感;扇形式结构和圆环式结构仿真结果表明扇形式更适合小力矩加载。  相似文献   

16.
为研究磷酸锰转化涂层对齿轮啮合温度的影响,综合运用齿轮啮合理论、摩擦学和传热学知识,并结合SRV摩擦磨损试验测得的涂层和非涂层情况下的摩擦因数,从而精确地计算出齿轮的摩擦热流密度、对流换热系数等边界条件及载荷;最终得到涂层前后齿轮轮齿的稳态温度场分布,并分析了转速、转矩等参数对齿轮稳态温度场的影响。研究结果表明,涂层处理后齿轮的最高温度低于未涂层齿轮的最高温度,为齿轮的抗疲劳、抗胶合研究提供了参考依据。  相似文献   

17.
张文涛  李珂  罗凯 《润滑与密封》2019,44(10):77-82
利用数值分析方法,建立斜-平面曲轴止推片单向热流固耦合模型,分析不同油膜厚度对斜-平面曲轴止推片润滑能力、温度场及变形的影响规律。结果表明:油膜的压力场、温度场、壁面切应力的峰值随油膜厚度的增加而降低,随转速的增加而上升;空穴现象亦有同样的规律,但主要发生在与油沟接触的平面区域上;轴瓦出口湍泄量及摩擦因数随油膜厚的增大而增加,随转速的升高而增加;转速越高摩擦功耗越大,而油膜厚度越大摩擦功耗越小;止推片温度场随油膜厚度及转速的变化规律与润滑油膜的温度场相同;止推片变形主要受温度影响,油膜厚度越小、转速越大变形越大。  相似文献   

18.
高速列车制动盘瞬态温度和热应力分布仿真分析   总被引:5,自引:4,他引:5  
制动盘的热疲劳损伤是当前列车安全制动的主要威胁。制动过程中的瞬态温度和热应力分布是热疲劳损伤研究的基础。通过建立制动盘无内热源的三维温度场分布的数学计算模型,采用热弹塑性有限元法,利用摩擦功率法计算温度场载荷,仿真不同制动工况下制动盘摩擦热负荷产生的温度场以及热应力分布。主要计算一次常用制动、一次紧急制动、三次紧急制动和一次坡道制动这4种制动工况。通过仿真分析发现,不同工况下制动盘面的温度变化有着相似的规律。制动开始阶段,随着强热流的不断输入,盘面在很短时间内迅速升温,很快达到峰值点。随后,盘体逐渐通过辐射和对流的方式散热,温度缓慢下降。相对紧急制动和常用制动的升温过程,坡道制动的升温显得缓慢一些。研究不同工况下制动盘温度和热应力的变化和分布规律,为高速列车复合材料制动盘的热疲劳性能评价提供依据。  相似文献   

19.
综合运用齿轮啮合学、摩擦学和传热学知识,精确计算了轮齿不同啮合位置的摩擦热流密度以及轮齿啮合面、端面的对流换热系数。利用ANSYS软件建立了直齿轮单个轮齿的有限元模型,获得了轮齿的本体温度场,分析了扭矩、转速以及润滑油输入温度等关键参数对轮齿本体温度场的影响。研究结果表明:轮齿最高温度区域分布在轮齿啮合接触面的中心部位,轮齿啮合面温度沿齿宽方向近似呈抛物线分布;轮齿的最高温度随扭矩、转速和润滑油输入温度的增加而增加;仿真值和试验值基本吻合,证明仿真分析方法可用于齿轮本体温度场的研究。  相似文献   

20.
建立摩擦温度场的理论计算模型,根据实时变化的摩擦因数,采用三种不同的加载过程对摩擦温度场进行仿真计算,探讨了摩擦热的产生及传导过程。试验及仿真结果表明,热流率平均加载不能体现摩擦过程中摩擦因数的变化对摩擦温度的影响,仿真时考虑接触位置的旋转半径及摩擦因数的实时变化能更准确地反映实际的摩擦温度变化。热量产生后由接触区域向四周扩散,下试样的温度梯度在接触区域正下方达到最大;同样的试验条件下,由于下试样材料热物理性质具有差异性,从而使得热传导率越高的下试样分配的热量越多,且其温度分布越均匀。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号