首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Dynamic flow characteristics of a counter-flow vortex tube is investigated using hot-wire and piezoelectric transducer (PZT) measurements. The experimental study is conducted over a range of cold air outlet ratios (Y=0.3, 0.5, 0.7, and 1.0) and inlet pressure 0.15 MPa. Temperatures are measured at the cold air outlet and along the vortex tube wall. Hot-wire is located at cold outlet and PZT is installed at inner vortex tube by mounting at throttle valve. The cold outlet temperature results show that the swirl flow of vortex tube is not axisymmetric. The hot-wire and PZT results show that there exist two distinct kinds of frequency, low frequency periodic fluctuations and high frequency periodic fluctuations. It is found that the low frequency fluctuation is consistent with the Helmholtz frequency and the high frequency fluctuation is strongly related with precession oscillation.  相似文献   

2.
《Wear》2002,252(3-4):179-188
The modeling of particle–wall impaction in a confined gas-particle flow using both Lagrangian and Eulerian approaches is reported. The Lagrangian method is based on a general computational fluid dynamics (CFD) code, FLUENT (FLUENT-4.3, 1996). In the Eulerian method, based on our previously developed code [J. Eng. Gas Turb. Power 119 (1997) 709], a computational procedure by decomposing one Eulerian solution of particulate phase into two equivalent Lagrangian solutions for incident and reflected particles has been developed. These two approaches are evaluated versus experimental data for particle–wall impaction using spray droplets. Two test cases, a 45° ramp and an isolated single tube, have been studied using the above two approaches to determine the particle behavior and physical properties of impacting and reflected particles near wall surface. Results show that both approaches are successful in predicting the main features of particulate flow near wall, however, the Eulerian approach is much less expensive than the Lagrangian approach in obtaining the flow solution of impacting particles. The particulate flow predictions using both approaches have been applied for predicting tube erosions that are compared with reported data. Good agreement between predictions using the two approaches and between the predicted and measured erosion results are observed.  相似文献   

3.
采用磨粒流精密加工技术对异形截面深孔进行数值模拟及实验研究,通过大涡模拟方法对钛合金异形截面孔零件进行数值分析,并进行相关实验研究以揭示磨粒流抛光异形曲面的表面创成机理。磨粒流精密加工数值分析揭示了磨粒流动态压力、速度、磨粒对壁面压力和壁面剪切力对壁面作用规律,获得了异形截面孔内流向截面的漩涡位置分布与漩涡产生原因以及漩涡与磨粒相互作用关系。经过磨粒流精密加工后,异形曲面的表面粗糙度由Ra=7.136 μm、Rz=40.103 μm减小到Ra=1.822 μm、Rz=8.964 μm,异形截面孔内表面凸起、球化现象去除,表面质量明显改善,漩涡使异形曲面的表面质量得到大幅改善。  相似文献   

4.
In the steady operation condition,the experiments and the numerical simulations are used to investigate the tip leakage flow fields in three low pressure axial flow fans with three kinds of circumferential skewed rotors,including the radial rotor,the forward-skewed rotor and the back-ward-skewed rotor. The three-dimensional viscous flow fields of the fans are computed. In the ex-periments,the two-dimensional plane particle image velocimetry (PIV) system is used to measure the flow fields in the tip region of three different pitchwise positions of each fan. The results show that the computational results agree well with the experimental data in the flow field of the tip region of each fan. The tip leakage vortex core segments based on method of the eigenmode analysis can dis-play clearly some characteristics of the tip leakage vortex,such as the origination position of tip leak-age vortex,the development of vortex strength,and so on. Compared with the radial rotor,the other two skewed rotors can increase the stability of the tip leakage vortex and the increment in the for-ward-skewed rotor is more than that in the backward-skewed one. Among the tip leakage vortices of the three rotors,the velocity of the vortex in the forward-skewed rotor is the highest in the circumfer-ential direction and the lowest in the axial direction.  相似文献   

5.
利用计算流体力学软件FLUENT对一种气井专用的电磁阀内部流场进行了计算和分析,结果表明:阀芯后部存在低速区,下部出口管内存在两个明显的涡流区,涡流区的出现加大了流动的阻力;随着阀芯开度的增大,阀芯后部低速区仍然存在,涡流区的旋转强度减弱,阀体内的湍动能和湍能耗散率减小,电磁阀的总压降减小;锥形阀座壁面和下游出口管下部壁面剪应力较大,其它区域剪应力较小,因此在阀芯锥面以及阀座锥形壁面和下游出口管下部的壁面处容易磨损。研究结果为电磁阀内部结构的设计提供了指导。  相似文献   

6.
涡管分离器流场的数值模拟及试验研究   总被引:4,自引:1,他引:4  
分析了湍流中的计算流体动力学CFD模型。用介于ASM和RSM之间的一个混和模型,对涡管分离器中的流场进行了理论计算,得出了涡管分离器中的流场分布规律。然后用激光多普勒装置试验测试了分离器中的速度分布,揭示了在涡管分离器底部有强烈的方向向内的径向流动。这对涡管分离器的优化设计有着重要意义。  相似文献   

7.
在大尺寸低速叶栅传热风洞中对一种高压涡轮导向叶栅的流场进行了流动显示实验研究。分别采用线簇和小球浮动法对五个雷诺数下的叶栅端壁区三维流场、叶片表面和端壁表面的流动进行了显示。实验结果表明 :涡轮叶栅中有强烈的二次流动 ,并存在复杂的涡系 ;三维流动区约占叶栅通道的 40 % ;雷诺数的增大将增强端壁区的三维流动。流场显示图片说明 :叶片吸力面靠近端壁有角涡形成与发展 ,并存在一个三角形区域 ;流场显示的通道涡大小与流场测量结果吻合。本文的实验结果可用于分析端壁表面和叶片表面换热特性的形成机理  相似文献   

8.
针对一种小流量涡流管加湿制冷系统进行了实验研究,得出了涡流管制冷系统不同入口压力下无加湿系统和有加湿系统的绝热效率曲线,指出也需要解决的关键技术问题。实验表明,有加湿系统可以大大提高涡流管的绝热效率。  相似文献   

9.

This paper elucidates three-dimensional flow phenomena that induce aero-acoustic noise at certain frequencies. Three-dimensional separated and vortical flow fields in an air conditioning system are investigated by Experimental fluid dynamics (EFD) analysis using an unsteady wall pressure measurement system with 30 high-respond pressure transducers and by Computational fluid dynamics (CFD) analysis using a Reynolds-averaged Navier-Stokes (RANS) simulation with a k-ε turbulence model. The EFD investigation revealed that the regions with high wall pressure fluctuation are located near the scroll tongue and on the bottom of the diffuser casing wall. A wall pressure fluctuation of 0.056 Blade passing frequency (BPF) was observed at sensor A near the scroll tongue, and a wall pressure fluctuation of 0.173 BPF was observed on part of the evaporator casing wall. The CFD investigation revealed that the reverse flow is generated by interaction between the scroll tongue and multi-blade fan. The reverse flow develops strongly over a wide range in the multi-blade fan near the scroll tongue. Furthermore, there is also a longitudinally separated vortex near the bottom of the diffuser casing. The reverse flow and longitudinally separated vortex interact with the wall casing. For this reason, the scroll tongue and the bottom of the diffuser casing had high pressure fluctuations in the EFD investigation. By considering aero-acoustic factors, an aerodynamic sound of 0.056 BPF can be explained by Helmholtz resonance phenomenon, which is generated by high pressure fluctuation due to the reverse flow near the scroll tongue. An aerodynamic sound of 0.173 BPF can be explained by the standing wave phenomenon, which is generated by high pressure fluctuation due to the longitudinally separated vortex on the bottom of the diffuser casing wall.

  相似文献   

10.
双流道泵内非定常流动数值模拟及粒子图像测速测量   总被引:5,自引:0,他引:5  
为探讨双流道泵内部的非定常流动机理,采用Fluent软件,基于滑移网格技术、 湍流模型计算了一双流道泵在不同工况下的内部流动,并将计算结果与粒子图像测速仪(Particle image velocimeter, PIV)实测结果进行比较。结果表明:计算所得双流道泵内部流场符合叶轮机械内部流动的一般规律,且与PIV实测结果总体变化趋势一致;由于双流道泵结构特殊,其进口处的流动状态与普通叶轮相差较大,出口处的流动状态与普通叶轮类似;叶轮进口处,流体基本沿流道吸力面流动,流道工作面上的相对速度很小,存在严重的脱流和旋涡;叶轮出口处,压力面和吸力面的速度趋于相等,射流—尾迹现象并不明显;由于叶轮—蜗壳动静干涉,两个叶轮流道内的静压分布有所不同;同一流道内,静压随着半径的增加而逐步增大,压力面侧静压大于吸力面侧;蜗壳流道内静压随半径增大,最大静压值在隔舌处。此项研究不仅加深了人们对双流道泵内非定常流动图画的理解,从而进一步完善双流道泵设计方法,同时也可为其他类型泵的内流研究提供借鉴。  相似文献   

11.
为了减轻压裂过程中流体对定压节流器和外面套管的损坏,利用流体动力学分析软件FLUENT中的标准k-ε模型,对节流器附近流场和压力分布进行数值模拟分析,进而对套管内封隔器分段压裂工艺中定压节流器的入口形状和出口形状进行优化。计算结果表明,该模型中的节流器空腔内壁存在冲蚀破坏,这主要是由于节流器入口附近有旋流场存在;节流器入口采用流线形过渡形状,可以减弱入口处的旋流场;近似流线形的节流器出口形状能保证在较高的节流器底部压力的条件下,降低工具内壁的动压力,在射流处起到整流作用的同时,降低湍流强度,有利于减弱工具内壁所受冲蚀;组合使用入口过渡形状和流线形出口结构能有效减弱压裂过程中流体对压裂工具的冲蚀破坏。  相似文献   

12.
The characteristics of Prandtl-Meyer expansion of supersonic flow with condensation along a wavy wall in a channel are investigated by means of experiments and numerical analyses. Experiments are carried out for the case of moist air flow in an intermittent indraft supersonic wind tunnel. The flow fields are visualized by a Schlieren system and the distributions of static pressure along the upper wavy wall are measured by a scanning valve system with pressure transducers. In numerical analyses, the distributions of streamlines, Mach lines, iso-pressure lines, and iso-mass fractions of liquid are obtained by the two-dimensional direct marching method of characteristics. The effects of stagnation temperature, absolute humidity, and attack angle of the upper wavy wall on the generation and the locations of generation and reflection of an oblique shock wave are clarified. Futhermore, it is confirmed that the wavy wall plays an important role in the generation of an oblique shock wave and that the effect of condensation on the flow fields is apparent.  相似文献   

13.
针对核电站使用的截止阀工作状态下的结构特点,基于计算流体力学理论,采用Realizable?K?Epsilon湍流模型以及Enhanced Wall Treatment处理方法,研究截止阀内部流场的压力、速度及流动状态等流场特性。结果表明,由于受对流影响,阀体中部壁面处速度过大,易对阀体内表面造成损害;阀体下方存在较大的旋涡,此处涡流形成的剧烈湍动造成湍动能增加,是流动过程中能量损失和振动的主要原因之一。研究结果对核级阀门的设计及优化具有参考作用。  相似文献   

14.
In this study, the effects of change in injection pressure on spray structure have been investigated on the high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Also emissions of diesel engines can be controlled by the analyzed results. Therefore, this study examines the evaporating spray structure in a constant volume chamber. The injection pressure is selected as the experimental parameter, is changed from 72 MPa to 112 MPa with a high pressure injection system (ECD-U2). The PIV (Particle Image Velocimetry) technique was used to capture behavior variation of the evaporative diesel spray. Analysis of the mixture formation process of diesel spray was executed by the results of flow analysis in this study. Consequentially the large-scale vortex flow could be found in downstream spray and the formed vortex governs the mixture formation process in diesel spray.  相似文献   

15.
We describe an experimental setup for supersonic jet expansions of supercritical fluids. It is characterized by well-defined thermodynamic values to allow systematic investigations of pressure and temperature effects on molecular beam parameters. The design permits stagnation temperatures T(0)=225-425 K with a thermal stability DeltaT(0)<30 mK and stagnation pressures p(0)=0.2-12 MPa that are measured with 0.05% precision. For optimum stability, gas reservoir, pressure transducer, and gauge amplifier are temperature-controlled, and a feedback loop permits active pressure stabilization using a pulseless syringe pump. With this approach stagnation pressures can be reproduced and kept constant to Deltap(0)<2.9 kPa. As a result, flow velocity and kinetic energy of molecular beams can be controlled with maximum accuracy.  相似文献   

16.
This work describes the development and testing of a system for measuring static pressure along the axis of supersonic flow devices such as convergent–divergent nozzles or ejectors. The pressure probe consists of a capillary tube positioned at the ejector centerline. A hole is perforated perpendicularly on the wall of the thin tube to capture and deport the static pressure measurement to a piezoelectric sensor located at one extremity of the tube outside the ejector. The measurements obtained are compared with numerical results from computational fluid dynamics simulations and wall pressure measurements. The first tests demonstrate the good capability of the pressure probe to detect shocks occurring in the flow and to provide continuous axial distributions of the static pressure.  相似文献   

17.
双腔室自振脉冲喷嘴空化射流数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
以风琴管喷嘴为基础,串联一个谐振腔形成双腔室自激振荡脉冲喷嘴,利用Fluent对其流场进行数值模拟,分析射流靶距、二级谐振腔腔长比、腔径比的变化对空化射流流场的影响。结果表明:谐振腔尺寸过大或过小均会影响涡环结构的形成,进而影响空化效果。当谐振腔腔长比为0.77、腔径比为2.6时,谐振腔内涡环结构对称性好,轴向含气率高,射流速度较高,该结构利于清洗效率的提高。靶面滞止压力可对空化效果产生影响。当射流靶距较小时,在滞止压力的作用下二级谐振腔无涡环结构产生,轴向含气率较低。当靶距增加到18 mm时滞止压力产生的影响减小,轴向含气率明显提高,因此清洗靶距应至少为18 mm。但靶距的增加会降低射流到达靶面的动能,因此最佳靶距应取18 mm。  相似文献   

18.
The vortex chamber is a mechanical device, without any moving parts that separates compressed gas into a high temperature region and a low temperature region. Functionally vortex chamber is similar to a Ranque-Hilsch vortex tube (RVHT), but it is a simpler and compact structure. The objective of the present study is to investigate computationally the physical reasoning behind the energy separation mechanism inside a vortex chamber. A computational analysis has been performed using three-dimensional compressible Navier-Stokes equations. A fully implicit finite volume scheme was used to solve the governing equations. A commercial software ANSYS CFX is used for this purpose. The computational predictions were validated with existing experimental data. The results obtained show that the vortex chamber contains a large free vortex zone and a comparatively smaller forced vortex region. The physical mechanism that causes the heating towards periphery of the vortex chamber is identified as the work done by the viscous force. The cooling at the center may be due to expansion of the flow. The extent of temperature separation greatly depends on the outer diameter of the vortex chamber. A small amount of compression is observed towards the periphery of the vortex chamber when the outer diameter is reduced.  相似文献   

19.
In the present study, features of the flow past a circular cylinder with single longitudinal groove pattern placed on its surface were investigated. Six different rectangular groove sizes were tested for angular position of the groove from the forward stagnation point of the circular cylinder within 0°≤θ≤150°. The particle image velocimetry (PIV) technique were employed to measure flow field downstream of the cylinder immersed in a uniform flow field with the Reynolds number, Re=5000. Time-averaged flow data such as vorticity, 〈ω〉 streamline, 〈Ψ〉, streamwise, 〈u′u′〉 and transverse, 〈v′v′〉 Reynolds normal stresses, turbulent kinetic energy, TKE and RMS of streamwise, urms and transverse, vrms velocity components were obtained from PIV data to demonstrate flow features. Moreover, frequency of Karman vortex shedding was explored using single point spectral analysis. It is concluded that presence of the groove on a cylinder surface significantly affects the near wake flow structure and turbulence statistics. Karman vortex shedding frequency, fk strongly depends on the groove size. Moreover, the shear layer instability is induced on the grooved side with additional frequencies.  相似文献   

20.
本文阐述国产300MW直流锅炉采用的ψ22×5.5mm四头碳钢内螺纹管高压汽水两相流沸腾传热特性和摩擦阻力特性的试验研究结果。沸腾传热试验参数范围为:压力P=9.8~22.6MPa,质量流速G=650~1750kg/m 2·s,内壁热负荷q=200~610kW/m 2。摩擦阻力试验参数范围为:压力P=9.8~20.6MPa,质量流速G=1530~3560kg/m 2·s,蒸汽干度x=0~1.0。通过试验,得出了内螺纹管的壁温变化规律、发生传热恶化的条件、抑制沸腾传热恶化的效果及两相流摩擦阻力的计算式。还提出了一个反映内螺纹管的结构参数对其传热特怀影响的无因次数,并对几种头数相同的内螺纹管的传热特性进行了比较和评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号