首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
F. Akhlaghi  A. Zare-Bidaki 《Wear》2009,266(1-2):37-45
The influence of graphite content on the dry sliding and oil impregnated sliding wear characteristics of sintered aluminum 2024 alloy–graphite (Al/Gr) composite materials has been assessed using a pin-on-disc wear test. The composites with 5–20 wt.% flake graphite particles were processed by in situ powder metallurgy technique. For comparison, compacts of the base alloy were made under the same consolidation processing applied for Al/Gr composites. The hardness of the sintered materials was measured using Brinell hardness tester and their bending strength was measured by three-point bending tests. Scanning electron microscopy (SEM) was used to analyze the debris, wear surfaces and fracture surfaces of samples. It was found that an increase in graphite content reduced the coefficient of friction for both dry and oil impregnated sliding, but this effect was more pronounced in dry sliding. Hardness and fracture toughness of composites decreased with increasing graphite content. In dry sliding, a marked transition from mild to severe wear was identified for the base alloy and composites. The transition load increased with graphite content due to the increased amount of released graphite detected on the wear surfaces. The wear rates for both dry and oil impregnated sliding were dependent upon graphite content in the alloy. In both cases, Al/Gr composites containing 5 wt.% graphite exhibited superior wear properties over the base alloy, whereas at higher graphite addition levels a complete reversal in the wear behavior was observed. The wear rate of the oil impregnated Al/Gr composites containing 10 wt.% or more graphite particles were higher than that of the base alloy. These observations were rationalized in terms of the graphite content in the Al/Gr composites which resulted in the variations of the mechanical properties together with formation and retention of the solid lubricating film on the dry and/or oil impregnated sliding surfaces.  相似文献   

2.
为改善纳米碳基添加剂在润滑油中的分散效果,考察Span20、Span60、Span80、Tween20、Tween60、油酸、十六烷基三甲基溴化胺7种分散剂对纳米碳粉、纳米石墨、纳米石墨烯在润滑油中的分散稳定性的影响。通过静置观察法筛选出较适合的分散剂,再通过紫外吸收光度法确定最优分散剂类型;同时通过超声分散试验和分散剂添加量的试验,确定最优超声分散时间和分散剂的最优添加量。结果表明:7种分散剂中,Span60对3种纳米碳基添加剂在基础油400SN中的分散效果最好;油样配置过程中最优超声振荡时间为30 min;纳米石墨、纳米碳粉和纳米石墨烯作为基础油400SN抗磨添加剂时,Span60的最优质量分数分别为1.0%、1.5%、2.5%。  相似文献   

3.
We studied tribological properties of Ni-containing single wall carbon nanotubes and carbon nano-onions. Nickel catalyst particles are often necessary to synthesize these carbon nanoparticles. Nanoparticles were used as additives dispersed in a lubricating poly-alpha-olefin base oil. We show superior tribological properties for carbon nanoparticles containing residual nickel cores. Thus, removal of nickel catalyst from carbon particles is not necessary for excellent tribological performances. Mechanisms of friction and wear reduction are discussed in the light of analytical data. Data suggest the tribo-formation of a Ni-doped carbon-like material.  相似文献   

4.
Industrial lubricants are invariably used with additives (with high sulfur and phosphorous contents) for tribological performance enhancement. However, these additives are environmentally very harmful. Hence, there is an urgent need to find alternate solutions for enhancing the tribological performance of lubricants and components without the use of harmful additives. The objective of this work is to investigate the feasibility of using polymer composite coatings in enhancing the tribological properties of steel surfaces in dry and base oil lubricated conditions. Pure epoxy and its composite (with 10?wt-% of graphene or graphite powder) films were coated onto steel substrates and tested under dry and base oil lubricated conditions. Friction and wear experiments were conducted on a ball on cylinder tribometer between polymer/composite coated cylindrical steel surface (shaft) and an uncoated steel ball as the counterface. Tests were conducted at various normal loads and speeds. In dry condition at 3 N load and 0.63?m s??1 sliding speed, the wear life of epoxy was increased by five times and coefficient of friction was nearly the same (0.18) on inclusion of graphene nanoparticle. In lubricated case, epoxy/graphene composite coating performed eight times and more than five times better than pure epoxy and epoxy/graphite respectively.  相似文献   

5.
以羰基铁粉为悬浮相、硅油为分散相,分别加入石墨、硼酸三丙酯、四硼酸钠和四硼酸钾作为润滑添加剂,采用球磨分散的方法制备磁流变液。用四球摩擦磨损试验机考察4种润滑添加剂在磁流变液中的摩擦磨损性能。采用扫描电子显微镜观察磨损表面形貌,并进行机制分析。结果表明,磁流变液抗磨性能非常差,主要是以三体磨粒磨损为主,加入4种润滑添加剂后均能提高磁流变液的抗磨性能,其中以四硼酸钠的减摩抗磨效果最好,抗磨性能相比提高了57%。  相似文献   

6.
A study on the tribological characteristics of graphite nano lubricants   总被引:3,自引:0,他引:3  
Many researchers have tried to improve the tribological characteristics of lubricants to decrease friction coefficients and wear rates. One approach is simply the use of additives in the base lubricant to change its properties. Recently, nanoparticles have emerged as a new kind of additive because of their size, shape and other properties. A nano lubricant is a new kind of engineering lubricant made of nanoparticles, dispersant, and base lubricant. In this study, graphite nanoparticles were used to fabricate nano lubricants with enhanced tribological properties and lubrication characteristics. The base lubricant used was industrial gear oil, which has a kinematic viscosity of 220 cSt at 40°C. To investigate the physical and tribological properties of nano lubricants, friction coefficients and temperatures were measured by a disk-on-disk tribotester. The surfaces of the fixed plates were observed by a scanning electron microscope and an atomic force microscope to analyze the characteristics of the friction surfaces. The results show that when comparing fixed plates coated with raw and nano lubricants, the plate coated with a nano lubricant containing graphite nanoparticles had a lower friction coefficient and less wear. These results indicate that graphite nanoparticle additives improve the lubrication properties of regular lubricants.  相似文献   

7.
李春风  罗新民  候滨 《润滑与密封》2007,32(7):111-113,121
用超声波对蠕虫石墨进行处理得到蠕虫石墨和纳米石墨薄片混合体的膨胀石墨润滑油添加剂,并利用氰基丙烯酸乙酯进行原位改性。用X射线衍射(XRD)、红外光谱(FT-IR)和热分析(TGA-DSC)等仪器分析了添加剂的组成和结构,表明制备的膨胀石墨润滑油添加剂保持了天然石墨的晶体结构,其表面聚合有聚氰基丙烯酸乙酯的有机层,添加入基础油中其层间吸附有大量基础油。利用四球机考察了添加剂在AN10全损耗系统用油中的摩擦磨损性能,表明膨胀石墨润滑油添加剂能提高润滑油的抗磨性能及承载能力,并能降低摩擦因数,其最佳用量约为0.2%。  相似文献   

8.
金属冷塑成型用润滑剂研究   总被引:3,自引:0,他引:3  
研究了蓖麻油加入二硫化钼、铝粉、石墨等添加剂后摩擦磨损性能以及极压性能的变化。用四球摩擦磨损试验机进行对比实验,研究了二硫化钼、铝粉、石墨、磁流体对摩擦因数、磨损的影响。结果表明:(1)蓖麻油为基础油,添加二硫化钼等添加剂,能提高蓖麻油的减摩、抗磨和极压性能。(2)含MoS210 g/L,A l粉30 g/L,石墨50 g/L的蓖麻油其减摩、抗磨和极压性能最好。(3)二硫化钼能起到极压添加剂的作用;A l粉能提高润滑油的稳定性;石墨含量是影响润滑剂摩擦因数最主要因素。  相似文献   

9.
《Wear》2007,262(3-4):262-273
The objective of the present investigation was to assess the influence of SiC particle dispersion in the alloy matrix, applied load, and the presence of oil and oil plus graphite lubricants on the wear behaviour of a zinc-based alloy. Sliding wear performance of the zinc-based alloy and its composite containing SiC particles has been investigated in dry and lubricated conditions. Base oil or mixtures of the base oil with different percentages of graphite were used for creating the lubricated conditions. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloys. It was also observed that there exists an optimum concentration of graphite particles in the lubricant mixture that leads to the best wear performance. The composite experienced higher frictional heating and friction coefficient than the matrix alloy in all the cases except oil lubricated conditions; a mixed trend was noticed in the latter case. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.Examination of worn surfaces revealed a change of predominating wear mechanisms from severe ploughing and/or abrasive wear for base alloy to delamination wear for the reinforced material under dry sliding conditions. The presence of the lubricant increased the contribution of adhesive wear component while reducing the severity of abrasion. This was attributed to the generation of more stable lubricant films on the contacting surfaces. Cross-sections of worn surfaces indicated substantial wear-induced plastic deformation, thereby suggesting adhesive wear to be a predominant wear mechanism in this study. The debris particles revealed deformed flakes and machining chips signifying the involvement of adhesion and abrasion modes of wear respectively.  相似文献   

10.
Yamamoto  Y.  Gondo  S.  Tanaka  N. 《Tribology Letters》2004,17(1):55-59
The effects of graphite powder on the friction and wear characteristics of molybdenum dithiocarbamate MoDTC were studied in reciprocated sliding contact using a ball-on-plate type tester. The oil used was squalane, a pure hydrocarbon. The addition of MoDTC alone to the oil showed a high coefficient of friction at an early stage of a rubbing test, since the extent of the formation of a surface film containing MoS2 was insufficient to decrease the coefficient of friction. The high friction at the early stage brought about noticeable wear. On the other hand, the addition of graphite powder together with succinimide-type dispersant to the oil containing MoDTC considerably improved the friction and wear performance not only at the early stage but also at the steady stage. The added graphite powder seems to cover the part of rubbing surfaces without a film containing MoS2 to reduce the friction and wear, not only at the steady stage after the running-in process, but also in the running-in process or at the early stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号