首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了研究齿轮偏心下的高速列车轮轨作用动态行为,建立了考虑齿轮传动系统的高速列车车辆空间动力学模型,详细考虑了齿轮时变啮合刚度、传递误差、齿侧间隙和摩擦等非线性因素.构建了齿轮传动偏心动力学模型并集成于整车动力学模型,实现传动系统与车辆系统动态耦合.基于建立的动力学模型,对比分析齿轮偏心与正常条件下的轮轨作用特性.而且,...  相似文献   

2.
动车组防滑控制特性分析   总被引:1,自引:0,他引:1  
列车在制动过程中,如果轮轨间制动力超过了最大粘着力,车轮就会产生滑行,轮轨之间的滑动会延长制动距离并使车轮踏面擦伤。踏面擦伤后不仅降低乘车的舒适性,也会给转向架零部件带来附加的冲击力,使其寿命缩短;为避免这种现象的产生,使用微机控制的防滑器,对制动、即将滑行、缓解、再粘着的全过程进行动态检测与控制。通过使用Simulink建立模型对动车组制动时防滑过程进行模拟仿真,通过检测车体、车轮速度的变化来控制制动缸压力的变化,进而达到防止车轮打滑的目的。  相似文献   

3.
针对线控制动系统控制的非线性及不确定性问题,在Matlab-Simulink中建立车辆动力学模型、线控机械制动系统模型,采用模糊PID方法设计了线控制动系统车辆制动力控制策略。选用Carsim车辆动力学软件与Matlab进行联合仿真分析,结果表明:该控制策略在高、低附着路面上稳定的保持车辆的最优滑移率,缩短了制动时间与距离,是一种有效的控制方法。  相似文献   

4.
为了防止自行式集装箱拖车可能出现的打滑现象,对电力拖车制动防滑控制系统进行了仿真研究。根据轮轨粘着特性,建立了电力拖车减速过程的动力学模型。依据直接蠕滑速度防滑控制方法,分别设计了门限控制器和模糊控制器。仿真结果表明:采用防滑控制方法可以有效地抑制驱动轮过度滑移甚至抱死,模糊控制与门限控制相比,能更平滑地调节制动力矩,更好地将蠕滑率控制在期望值附近。  相似文献   

5.
牵引/制动载荷和轮轨黏着条件对轮轨系统动态相互作用影响显著,尤其是轮轨切向作用。基于车辆-轨道耦合动力学理论,建立地铁车辆-板式轨道空间耦合动力学模型;由于轮轨接触斑形状以及接触应力分布实际上呈明显的非赫兹特性,因此建立考虑轮对摇头角的轮轨非赫兹法向接触模型以及相应的轮轨非赫兹蠕滑模型,并用于耦合动力学的轮轨动态相互作用计算中。基于所建立的动力学仿真模型,系统分析牵引/制动载荷以及复杂的轮轨界面黏着条件对轮轨系统动态相互作用的影响。结果表明,牵引/制动载荷和轮轨黏着条件对轮轨切向接触应力及黏-滑区域分布影响显著,在干燥接触条件下,随着牵引/制动载荷的增大轮轨切向应力幅值增大,黏着区域减小,而当牵引/制动载荷较高且轮轨黏着水平较低时,接触斑内表现为全滑动状态。研究结果可为车轮/钢轨异常磨损和型面优化设计进一步研究提供理论基础。  相似文献   

6.
半主动悬挂高速列车稳定性研究   总被引:2,自引:0,他引:2  
运用非线性分叉理论,对半主动高速列车的蛇行运动稳定性开展了全面研究。建立高速列车模型、半主动减振器模型、半主动控制器模型,并在此基础上构建半主动高速列车联合仿真模型系统。详细分析高速列车动力学系统中影响稳定性的主要非线性特征:轮轨接触几何非线性和抗蛇行减振器非线性。利用演算法计算不同非线性特征组合下的高速列车在采用被动悬挂和采用半主动悬挂系统时的蛇行运动分叉特征,并与线路试验进行对比。结果显示,半主动悬挂系统对采用阻尼型抗蛇行减振器并匹配以大锥度踏面的车辆的稳定性影响不大。半主动悬挂会使采用摩擦型抗蛇行减振器匹配以小锥度踏面的车辆的稳定性有所降低但不影响正常使用。半主动悬挂会使采用摩擦型抗蛇行减振器匹配以磨耗状态的小锥度踏面的稳定性显著下降。因此在高速列车设计中应根据车辆悬挂系统特点,谨慎选用半主动悬挂,在服役过程中亦应关注轮轨关系的变化对半主动悬挂车辆稳定性的影响。  相似文献   

7.
地铁车辆控制的核心是列车制动缸压力控制,具有非线性、大迟滞、复杂性、时变性的特点。为了有效减少由于地铁车辆空气制动施加、缓解所引起的列车纵向力加大对运营车辆安全的影响,建立制动缸压力的数学模型。采用基于T-S模糊预测控制的方法,设计地铁车辆模糊预测控制器和模糊预测控制规则,并通过比较其与传统模糊控制和PID控制的制动特性,验证所建模型的实用性和所选算法的有效性。  相似文献   

8.
建立高速列车车辆系统非线性动力学仿真模型,考虑悬挂刚度和阻尼、轮轨匹配参数、轮轨界面参数、轨道不平顺和载重的随机性,应用数值仿真研究高速列车动力学性能的随机统计特征。分析随机参数确定方法、动力学仿真工况数量和计算结果后处理方法,并与试验结果进行对比验证。计算结果表明,与常规动力学分析相比,考虑随机因素的动力学方法可以得到动力学指标的分布特性,能够考虑到多种参数随机变化对动力学性能的综合影响。常规动力学计算结果是考虑随机因素的特例,能代表车辆动力学性能的普遍规律,但不能掌握动力学指标的变化域和分布规律。考虑随机因素的动力学方法可用于高速列车动力学性能预测、动力学参数优化和异常振动分析等领域,能更加真实、全面反映车辆动力学性能,优化出的悬挂参数具有更广泛的线路运行适应性。  相似文献   

9.
为了研究车辆振动对高速列车制动系统温度和振动特性的影响,首先,建立了高速列车整车动力学模型,通过线路试验验证了该模型的有效性;其次,建立了盘-块制动系统热机耦合有限元模型,通过对比仿真与试验摩擦块界面温度分布,验证了该模型的正确性;最后,基于车辆动力学模型获得的振动环境,研究了简谐激励和轨道不平顺激励作用下制动系统的温度和振动特性。结果表明:与忽略车辆振动相比,当简谐激励频率为转频20倍时,制动系统的振动加速度均方根值增加了304%;当考虑轨道不平顺激励时,制动系统的振动加速度均方根值增加了24%;外部激励会引起系统复杂的局部接触行为,导致摩擦块界面温度最大值和温度场分布与无外部激励相比存在一定的差异。因此,在分析评估高速列车制动系统温度和振动特性时,特别是在长大坡道制动条件下,需要考虑车辆振动环境的影响。  相似文献   

10.
构建基于货车冲击试验数据的缓冲器修正模型模拟缓冲器动力学特性,该模型包含附加阻尼和黏滞摩擦;建立列车空气制动系统多参数数学简化模型表征重载列车空气制动特性;建立以缓冲器动力学模型及空气制动系统模型为基础的列车纵向冲动动力学模型,分析重载组合列车在不同线路条件和制动作用下的纵向动力学行为。结果表明:缓冲器动力学修正模型能较为真实地反映出冲击试验中缓冲器的磁滞特性、尖峰现象及过渡曲线的平稳连接;列车空气制动系统模型能够仿真获得与试验结果相近的制动缸充气特性曲线;采用列车纵向冲动动力学模型仿真获得的大秦线重载组合列车纵向车钩力分布与列车试验值相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号